I have a sequential campaign data in Pandas dataset.
#sample data code 
user_id = [9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,4705,4705,4705,4705,4705,223,223,223,223,223,223,223,223]
transaction_Value= [50,125,0,100,0,1000,473,0,47,110,0,44,93,0,49,92,0,242,0,75,0,47,122,0,50,100,200,0,35,85,0,50]
Campaign = ['M1','M1','Used','M1','Used','W1','Used','Used','W2','W2','Used','W2','W2','Used','W2','W2','Used','O1','Used','W3','Used','W2','S1','Lost','M1','M1','M1','Used','W2','S2','Lost','S2',]
transaction_c= [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,1,2,3,4,5,1,2,3,4,5,6,7,8]
 
df = pd.DataFrame(list(zip(user_id,transaction_Value,Campaign,transaction_c)), columns =['user_id','transaction_Value', 'Campaign','transaction_c'])
So far I have used the following code to group the data
df2 = (df.set_index(['user_id',df.groupby('user_id').cumcount()])[('transaction_Value')]
         .unstack(fill_value='')
         .reset_index())
This Transposes the value based on the transaction number
| user_id | 0  | 1   | 2   | 3   | 4  | 5    | 6   | 7  | 8  | 9   | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17  | 18 |
|---------|----|-----|-----|-----|----|------|-----|----|----|-----|----|----|----|----|----|----|----|-----|----|
| 9       | 50 | 125 | 0   | 100 | 0  | 1000 | 473 | 0  | 47 | 110 | 0  | 44 | 93 | 0  | 49 | 92 | 0  | 242 | 0  |
| 223     | 50 | 100 | 200 | 0   | 35 | 85   | 0   | 50 |    |     |    |    |    |    |    |    |    |     |    |
| 4705    | 75 | 0   | 47  | 122 | 0  |      |     |    |    |     |    |    |    |    |    |    |    |     |    |
how do I write a code so that this is changed to every time the rows value is used or lost
I could do the same for the Campaign values and then stack these 2 dataframes together
Ideal output
| user_id | Type        | 1    | 2    | 3    | 4    |
|---------|-------------|------|------|------|------|
| 9       | Campaign    | M1   | M1   | Used |      |
| 9       | Campaign    | M1   | Used |      |      |
| 9       | Campaign    | W1   | Used |      |      |
| 9       | Campaign    | Used |      |      |      |
| 9       | Campaign    | W2   | W2   | Used |      |
| 9       | Campaign    | W2   | W2   | Used |      |
| 9       | Campaign    | W2   | W2   | Used |      |
| 9       | Campaign    | O1   | Used |      |      |
| 223     | Campaign    | M1   | M1   | M1   | Used |
| 223     | Campaign    | W2   | S2   | Lost |      |
| 223     | Campaign    | S2   |      |      |      |
| 9       | Transaction | 50   | 125  | 0    |      |
| 9       | Transaction | 100  | 0    |      |      |
| 9       | Transaction | 1000 | 473  |      |      |
| 9       | Transaction | 0    |      |      |      |
| 9       | Transaction | 47   | 110  | 0    |      |
| 9       | Transaction | 44   | 93   | 0    |      |
| 9       | Transaction | 49   | 92   | 0    |      |
| 223     | Transaction | 242  | 0    |      |      |
| 223     | Transaction | 50   | 100  | 200  | 0    |
| 223     | Transaction | 35   | 85   | 0    |      |
| 223     | Transaction | 50   |      |      |      |
Appreciate all the help in doing resolving this . thanks :)