Question
Why the same value -3.29686744 results in different mean and standard deviation?
Expected
X = np.array([
    [-1.11793447, -3.29686744, -3.50615096],
    [-1.11793447, -3.29686744, -3.50615096],
    [-1.11793447, -3.29686744, -3.50615096]
])
mean = np.mean(X, axis=0)
print(f"mean is \n{mean}\nX-mean is \n{X-mean}\n")
sd = np.std(X, axis=0)
print(f"SD is \n{sd}\n")
Result:
mean is 
[-1.11793447 -3.29686744 -3.50615096]
X-mean is 
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
SD is 
[0. 0. 0.]
Unexpected
X = np.array([
    [-1.11793447, -3.29686744, -3.50615096],
    [-1.11793447, -3.29686744, -3.50615096],
    [-1.11793447, -3.29686744, -3.50615096],
    [-1.11793447, -3.29686744, -3.50615096],
    [-1.11793447, -3.29686744, -3.50615096]
])
mean = np.mean(X, axis=0)
print(f"mean is \n{mean}\nX-mean is \n{X-mean}\n")
sd = np.std(X, axis=0)
print(f"SD is \n{sd}\n")
Result is:
mean is 
[-1.11793447 -3.29686744 -3.50615096]
X-mean is 
[[0.0000000e+00 4.4408921e-16 4.4408921e-16]
 [0.0000000e+00 4.4408921e-16 4.4408921e-16]
 [0.0000000e+00 4.4408921e-16 4.4408921e-16]
 [0.0000000e+00 4.4408921e-16 4.4408921e-16]
 [0.0000000e+00 4.4408921e-16 4.4408921e-16]]
SD is 
[0.0000000e+00 4.4408921e-16 4.4408921e-16]
 
    