I recently started to write my own functions to speed up standard and repetitive task while analyzing data with R.
At the moment I'm working on a function with three arguments and ran into a challenge I could not solve yet. I would like to have an optional grouping argument. During the process the function should check if there is a grouping argument and then continue using either subfunction 1 or 2.
But I always get the error "Object not found" if the grouping argument is not NA. How can I do this?
Edit: In my case the filter usually is used to filter certain valid or invalid years. If there is a grouping argument there will follow more steps in the pipe than if there is none.
require(tidyverse)
Data <- mpg
userfunction <- function(DF,Filter,Group) {
  
  without_group <- function(DF) {
    DF %>% 
      count(year)
  }
  
  with_group <- function(DF) {
    DF %>% 
      group_by({{Group}}) %>% 
      count(year) %>% 
      pivot_wider(names_from=year, values_from=n) %>%
      ungroup() %>% 
      mutate(across(.cols=2:ncol(.),.fns=~replace_na(.x, 0))) %>% 
      mutate(Mittelwert=round(rowMeans(.[,2:ncol(.)],na.rm=TRUE),2))
  }
  
  Obj <- DF %>% 
    ungroup() %>% 
    {if(Filter!=FALSE) filter(.,eval(rlang::parse_expr(Filter))) else filter(.,.$year==.$year)} %>%
    {if(is.na(Group)) without_group(.) else with_group(.)} 
  
  return(Obj)
    
}
For NA it already works:
> Data %>% 
+   userfunction(FALSE,NA)
# A tibble: 2 x 2
   year     n
  <int> <int>
1  1999   117
2  2008   117
With argument it does not work:
> Data %>% 
+   userfunction(FALSE,manufacturer)
 Error in DF %>% ungroup() %>% { : object 'manufacturer' not found
Edit: What I would expect from the above function would be the following output:
> Data %>% userfunction_exp(FALSE,manufacturer)
# A tibble: 15 x 4
   manufacturer `1999` `2008` Mittelwert
   <chr>         <dbl>  <dbl>      <dbl>
 1 audi              9      9        9  
 2 chevrolet         7     12        9.5
 3 dodge            16     21       18.5
 4 ford             15     10       12.5
 5 honda             5      4        4.5
 6 hyundai           6      8        7  
 7 jeep              2      6        4  
 8 land rover        2      2        2  
 9 lincoln           2      1        1.5
10 mercury           2      2        2  
11 nissan            6      7        6.5
12 pontiac           3      2        2.5
13 subaru            6      8        7  
14 toyota           20     14       17  
15 volkswagen       16     11       13.5
 Data %>% userfunction_exp("cyl==4",manufacturer)
# A tibble: 9 x 4
  manufacturer `1999` `2008`  mean
  <chr>         <dbl>  <dbl> <dbl>
1 audi              4      4   4  
2 chevrolet         1      1   1  
3 dodge             1      0   0.5
4 honda             5      4   4.5
5 hyundai           4      4   4  
6 nissan            2      2   2  
7 subaru            6      8   7  
8 toyota           11      7   9  
9 volkswagen       11      6   8.5
2021-04-01 14:55: edited to add some information and add some steps to the pipe for function with_group.
 
     
    