With your shown samples, could you please try following.
tdf[["val", "Adm"]] = tdf["text_1"].str.extract(r'^value:\s?(\S+(?:\s[^-]+)?)(?:\s-\s.*?-([^-]*)(?:-.*)?)?$', expand=True)
tdf
Online demo for above regex
Output will be as follows.
                                                    text_1          val                  Adm
0                     value: 1.25MG - OM - PO/TUBE - ashaf       1.25MG             PO/TUBE 
1                        value:2.5 MG - OM - PO/TUBE -test       2.5 MG             PO/TUBE 
2                                       value: 18 UNITS(S)  18 UNITS(S)                  NaN
3  value: 850 MG - TDS AFTER FOOD - SC (SUBCUTANEOUS) -had       850 MG   SC (SUBCUTANEOUS) 
4                              value: 75 MG - OM - PO/TUBE        75 MG              PO/TUBE
Explanation: Adding detailed explanation for above.
^value:\s?       ##Checking if value starts from value: space is optional here.
(\S+             ##Starting 1st capturing group from here and matching all non space here.
  (?:\s[^-]+)?   ##In a non-capturing group matching space till - comes keeping it optional.
)                ##Closing 1st capturing group here.
(?:\s-\s.*?-     ##In a non-capturing group matching space-space till - first occurrence.
  ([^-]*)        ##Creating 2nd capturing group which has values till next - here.
  (?:-.*)?       ##In a non capturing group from - till end of value keeping it optional.
)?$              ##Closing non-capturing group at the end of the value here.