The issue is with the data used.  it should match the levels used in the training.  E.g. if we use one of the rows from trainingData to predict, it does work
predict(model, head(model$trainingData, 1))
#[1] Curveball
#Levels: Changeup Curveball Fastball Sinker Slider
By checking the str of both datasets, some of the factor columns in the training is character class
str(model$trainingData)
'data.frame':   1277525 obs. of  7 variables:
 $ pitcher     : Factor w/ 1390 levels "112526","115629",..: 277 277 277 277 277 277 277 277 277 277 ...
 $ stand       : Factor w/ 2 levels "L","R": 1 1 2 2 2 2 2 1 1 1 ...
 $ p_throws    : Factor w/ 2 levels "L","R": 2 2 2 2 2 2 2 2 2 2 ...
 $ balls       : num  0 1 0 1 2 2 2 0 0 0 ...
 $ strikes     : num  0 0 0 0 0 1 2 0 1 2 ...
 $ outs_when_up: num  1 1 1 1 1 1 1 2 2 2 ...
 $ .outcome    : Factor w/ 5 levels "Changeup","Curveball",..: 3 4 1 4 1 5 5 1 1 5 ...
str(newdata)
tibble [1 × 6] (S3: tbl_df/tbl/data.frame)
 $ balls       : int 3
 $ strikes     : int 2
 $ outs_when_up: int 1
 $ stand       : chr "R"
 $ pitcher     : int 605200
 $ p_throws    : chr "R"
An option is to make levels same for factor class
nm1 <- intersect(names(model$trainingData), names(newdata))
nm2 <- names(which(sapply(model$trainingData[nm1], is.factor)))
newdata[nm2] <- Map(function(x, y) factor(x, levels = levels(y)), newdata[nm2], model$trainingData[nm2])
Now do the prediction
predict(model, newdata)
#[1] Sinker
#Levels: Changeup Curveball Fastball Sinker Slider