I have to perform a transform operation on pyspark dataframe which is similar to pandas transform. I got below pyspark-dataframe by applying .summary() operation on dataframe.
value   col_a       col_b           col_c
count   14.000000   14.000000       14.000000   
mean    9.928571    3189.785714     155210.857143   
std     7.086979    1413.286904     76682.259154    
min     0.000000    0.000000        0.000000    
25%     5.500000    3152.500000     129994.750000   
50%     9.500000    3596.000000     158677.500000   
75%     12.500000   4007.250000     210596.750000   
max     23.000000   4543.000000     256496.000000   
And I want to convert rows into columns and columns to rows. Like below
value   count   mean             std         min 25%        50%      75%         max
col_a   14.0    9.928571        7.086979     0.0  5.50      9.5      12.50      23.0
col_b   14.0    3189.785714     1413.286904  0.0  3152.50   3596.0   4007.25    4543.0
col_c   14.0    155210.857143   76682.259154 0.0  129994.75 158677.5 210596.75  256496.0
Also, columns before transform are not fixed.For problem explanation i have taken 3 columns col_a, col_b, col_c. But in a real scenario, it is up to 10k.
In pandas same I can achieve by doing like below:-
     transformed_df = df.T