Here's my data:
subject     arm treat   bline   change
'subject1'  'L' N   6.3597  4.9281
'subject1'  'R' T   10.3499 1.8915
'subject3'  'L' N   12.4108 -0.9008
'subject3'  'R' T   13.2422 -0.7357
'subject4'  'L' T   8.7383  2.756
'subject4'  'R' N   10.8257 -0.531
'subject5'  'L' N   7.1766  2.0536
'subject5'  'R' T   8.1369  1.9841
'subject6'  'L' T   10.3978  9.0743
'subject6'  'R' N   11.3184  3.381
'subject8'  'L' T   10.7251  2.9658
'subject8'  'R' N   10.9818  2.9908
'subject9'  'L' T   7.3745   2.9143
'subject9'  'R' N   9.4863  -3.0847
'subject10' 'L' T   11.8132  -2.1629
'subject10' 'R' N   9.5287   0.1401
'subject11' 'L' T   8.2977   6.2219
'subject11' 'R' N   9.3691   0.7408
'subject12' 'L' T   12.6003  -0.7645
'subject12' 'R' N   11.7329  0.0342
'subject13' 'L' N   9.4918  2.0716
'subject13' 'R' T   9.6205  1.5705
'subject14' 'L' T   9.3945  4.6176
'subject14' 'R' N   11.0176 1.445
'subject16' 'L' T   8.0221  1.4751
'subject16' 'R' N   9.8307  -2.3697
When I fit a mixed model with treat and arm as factors:
m <- lmer(change ~ bline + treat + arm + (1|subject), data=change1)
ls_means(m, which = NULL, level=0.95, ddf="Kenward-Roger")
The ls_means statement returns no result. Can anyone help with what is going wrong?
 
     
    