Without example data, it's unclear what you're trying. But using the operations in your for loop, it could probably be done like this instead, without any loop:
myValue = df['myCol']  # the column you wanted and other calculations
df['myCol'] = df['myCol'].shift() - myValue
Depending on what you're trying, one of these should be what you want:
# starting with this df
   myCol  otherCol
0      2         6
1      9         3
2      4         8
3      2         8
4      1         7
# next row minus current row
df['myCol'] = df['myCol'].shift(-1) - df['myCol']
df
# result:
   myCol  otherCol
0    7.0         6
1   -5.0         3
2   -2.0         8
3   -1.0         8
4    NaN         7
or
# previous row minus current row
df['myCol'] = df['myCol'].shift() - df['myCol']
df
# result:
   myCol  otherCol
0    NaN         6
1   -7.0         3
2    5.0         8
3    2.0         8
4    1.0         7
And myVal can be anything, like some mathematical operations vectorised over an entire column:
myVal = df['myCol'] * 2 + 3
# myVal is:
0     7
1    21
2    11
3     7
4     5
Name: myCol, dtype: int32
df['myCol'] = df['myCol'].shift(-1) - myVal
df
   myCol  otherCol
0    2.0         6
1  -17.0         3
2   -9.0         8
3   -6.0         8
4    NaN         7