I have a DataFrame from Pandas:
import pandas as pd
inp = [{'date':'31/03/2021 11:50:12 PM', 'value':100}, 
{'date':'1/4/2021 0:53','value':110}, 
{'date':'2/04/2021 9:40:12 AM', 'value':200}]
df = pd.DataFrame(inp)
print(f'{df}\n')
print(df.dtypes)
output:
                       date  value
0  '31/03/2021 11:50:12 PM'    100
1           '1/4/2021 0:53'    110
2    '2/04/2021 9:40:12 AM'    100
date     object
value     int64
dtype: object
Now I want to convert the 'date' column from object to Datetime type so that the output will be as follow:
                 date  value
0 2021-03-31 23:50:12    100
1 2021-04-01 00:53:00    110
2 2021-04-02 09:40:12    100
date     datetime64[ns]
value             int64
dtype: object
I have tried to run this code:
df['date'] = pd.to_datetime(df['date'])
print(f'{df}\n')
print(df.dtypes)
But the output was as follow:
                 date  value
0 2021-03-31 23:50:12    100
1 2021-01-04 00:53:00    110
2 2021-02-04 09:40:12    100
date     datetime64[ns]
value             int64
dtype: object
As you can see, the panda to_datetime function mistook the first number in the column value with the dd/mm/yyyy hh:mm format as month. I would like to know how to convert the column to datetype format while also accounting for the different placement of the month and day numbers.
 
     
     
    