I have a DataFrame of books that I removed and reworked some information. However, there are some rows in the column "bookISBN" that have duplicate values, and I want to merge all those rows into one.
I plan to make a new DataFrame where I keep the first values for the url, the ISBN, the title and the genre, but I want to sum the values of the column "genreVotes" in order to create the merge. How can I do this?
Original dataframe:
In [23]: network = data[["bookTitle", "bookISBN", "highestVotedGenre", "genreVotes"]]
         network.head().to_dict("list")
Out [23]: 
{'bookTitle': ['The Hunger Games',
  'Twilight',
  'The Book Thief',
  'Animal Farm',
  'The Chronicles of Narnia'],
 'bookISBN': ['9780439023481',
  '9780316015844',
  '9780375831003',
  '9780452284241',
  '9780066238500'],
 'highestVotedGenre': ['Young Adult',
  'Young Adult',
  'Historical-Historical Fiction',
  'Classics',
  'Fantasy'],
 'genreVotes': [103407, 80856, 59070, 73590, 26376]}
Duplicates:
In [24]: duplicates = network[network.duplicated(subset=["bookISBN"], keep=False)]
         duplicates.loc[(duplicates["bookISBN"] == "9780439023481") | (duplicates["bookISBN"] == "9780375831003")]
Out [24]:
{'bookTitle': ['The Hunger Games',
  'The Book Thief',
  'The Hunger Games',
  'The Book Thief',
  'The Book Thief'],
 'bookISBN': ['9780439023481',
  '9780375831003',
  '9780439023481',
  '9780375831003',
  '9780375831003'],
 'highestVotedGenre': ['Young Adult',
  'Historical-Historical Fiction',
  'Young Adult',
  'Historical-Historical Fiction',
  'Historical-Historical Fiction'],
 'genreVotes': [103407, 59070, 103407, 59070, 59070]}
(In this example the votes were all the same but in some cases the values are different).
Expected output:
{'bookTitle': ['The Hunger Games',
  'Twilight',
  'The Book Thief',
  'Animal Farm',
  'The Chronicles of Narnia'],
 'bookISBN': ['9780439023481',
  '9780316015844',
  '9780375831003',
  '9780452284241',
  '9780066238500'],
 'highestVotedGenre': ['Young Adult',
  'Young Adult',
  'Historical-Historical Fiction',
  'Classics',
  'Fantasy'],
 'genreVotes': [260814, 80856, 177210, 73590, 26376]}
