I have a program to detect masks in Realtime using the KNN classifier. First, I doing capture human face using mask and not mask in a folder. Then each folder is converted to .NPY file, , like the following program code: model.ipynb
The .npy file is processed in the training program as follows code:
train_and_test.ipynb
But when testing, there is an error like this:
(165, 165, 3)
(100, 100, 3)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-29-0f61e7a9f47a> in <module>
     14             print(face.shape)
     15             #face=face.reshape(1,-1)
---> 16             face=pca.transform(face)
     17             face=std.transform(face)
     18             prediction=knn.predict(face)
c:\users\acer\appdata\local\programs\python\python39\lib\site-packages\sklearn\decomposition\_base.py in transform(self, X)
    124         check_is_fitted(self)
    125 
--> 126         X = self._validate_data(X, dtype=[np.float64, np.float32], reset=False)
    127         if self.mean_ is not None:
    128             X = X - self.mean_
c:\users\acer\appdata\local\programs\python\python39\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
    419             out = X
    420         elif isinstance(y, str) and y == 'no_validation':
--> 421             X = check_array(X, **check_params)
    422             out = X
    423         else:
c:\users\acer\appdata\local\programs\python\python39\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
     61             extra_args = len(args) - len(all_args)
     62             if extra_args <= 0:
---> 63                 return f(*args, **kwargs)
     64 
     65             # extra_args > 0
c:\users\acer\appdata\local\programs\python\python39\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
    657                     "into decimal numbers with dtype='numeric'") from e
    658         if not allow_nd and array.ndim >= 3:
--> 659             raise ValueError("Found array with dim %d. %s expected <= 2."
    660                              % (array.ndim, estimator_name))
    661 
ValueError: Found array with dim 3. Estimator expected <= 2.
How to solve the error problem? and what the error mean? or you can update the program to the link
Thanks
