I am trying to compare two data frames using datacompy package. And I am seeing something weird.
print(dfA)
          req_nbr          unit_cost_amt
0        24468868            1.36870
1        24468868            1.36870
2        24468868            1.64952
3        24468868            1.64952
4        24468868            0.83289
5        24468868            0.83289
6        24468868            0.83289
7        24468868            0.83289
Then I have another dataframe with same data and structure.
print(dfB)
          req_nbr          unit_cost_amt
0        24468868            1.36870
1        24468868            1.36870
2        24468868            1.64952
3        24468868            1.64952
4        24468868            0.83289
5        24468868            0.83289
6        24468868            0.83289
7        24468868            0.83289
Both dataframes are same and of same datatypes.
dfA['unit_cost_amt'].dtype
dtype('float64')
dfB['unit_cost_amt'].dtype
dtype('float64')
Now I m doing a compare using datacompy
        compare = datacompy.Compare(
                                dfA,
                                dfB,
                                # You can also specify a list of columns
                                join_columns = ['req_nbr'], 
                                # Optional, defaults to 0
                                abs_tol = 0,
                                # Optional, defaults to 0
                                rel_tol = 0, 
                                # Optional, defaults to 'df1'
                                df1_name = 'Old',
                                # Optional, defaults to 'df2'
                                df2_name = 'New' 
                                )
    print(compare.report())
And it shows differences...
DataComPy Comparison
--------------------
DataFrame Summary
-----------------
  DataFrame  Columns  Rows
0       Old        2     8
1       New        2     8
Column Summary
--------------
Number of columns in common: 2
Number of columns in Old but not in New: 0
Number of columns in New but not in Old: 0
Row Summary
-----------
Matched on: req_nbr
Any duplicates on match values: Yes
Absolute Tolerance: 0
Relative Tolerance: 0
Number of rows in common: 8
Number of rows in Old but not in New: 0
Number of rows in New but not in Old: 0
Number of rows with some compared columns unequal: 4
Number of rows with all compared columns equal: 4
Column Comparison
-----------------
Number of columns compared with some values unequal: 1
Number of columns compared with all values equal: 1
Total number of values which compare unequal: 4
Columns with Unequal Values or Types
------------------------------------
          Column Old dtype New dtype  # Unequal      Max Diff  # Null Diff
    0  unit_cost_amt   float64   float64          4  1.110223e-16            0
Sample Rows with Unequal Values
-------------------------------
          req_nbr             unit_cost_amt (Old)       unit_cost_amt (New)
6        24468868                  0.83289                  0.83289
7        24468868                  0.83289                  0.83289
4        24468868                  0.83289                  0.83289
5        24468868                  0.83289                  0.83289
Any idea what I am doing wrong here ? Its puzzling.
 
    