Automatic quadrangle fitting is not so trivial...
- There is a good example in the following post, but it's implemented in C++.
- The method I use is more like the following post - simpler, but less accurate.
The suggested solution uses the following stages:
- Find contours, (and get the largest - needed in case there is more than one).
- Approximate the contour to polygon using cv2.approxPolyDP.
 Assume the polygon is a quadrangle.
- Sort the 4 corners in the right order.
 Note: The method I used for sorting the corner is too complicated - you may sort the corners using simple logic.
Here is a code sample:
import cv2
import numpy as np
def find_corners(im):
    """ 
    Find "card" corners in a binary image.
    Return a list of points in the following format: [[640, 184], [1002, 409], [211, 625], [589, 940]] 
    The points order is top-left, top-right, bottom-left, bottom-right.
    """
    # Better approach: https://stackoverflow.com/questions/44127342/detect-card-minarea-quadrilateral-from-contour-opencv
    # Find contours in img.
    cnts = cv2.findContours(im, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2]  # [-2] indexing takes return value before last (due to OpenCV compatibility issues).
    # Find the contour with the maximum area (required if there is more than one contour).
    c = max(cnts, key=cv2.contourArea)
    # https://stackoverflow.com/questions/41138000/fit-quadrilateral-tetragon-to-a-blob
    epsilon = 0.1*cv2.arcLength(c, True)
    box = cv2.approxPolyDP(c, epsilon, True)
    # Draw box for testing
    tmp_im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
    cv2.drawContours(tmp_im, [box], 0, (0, 255, 0), 2)
    cv2.imshow("tmp_im", tmp_im)
    box = np.squeeze(box).astype(np.float32)  # Remove redundant dimensions
    # Sorting the points order is top-left, top-right, bottom-right, bottom-left.
    # Note: 
    # The method I am using is a bit of an "overkill".
    # I am not sure if the implementation is correct.
    # You may sort the corners using simple logic - find top left, bottom right, and match the other two points.
    ############################################################################
    # Find the center of the contour
    # https://docs.opencv.org/3.4/dd/d49/tutorial_py_contour_features.html
    M = cv2.moments(c)
    cx = M['m10']/M['m00']
    cy = M['m01']/M['m00']
    center_xy = np.array([cx, cy])
    cbox = box - center_xy  # Subtract the center from each corner
    # For a square the angles of the corners are:
    # -135   -45
    #
    #
    # 135     45
    ang = np.arctan2(cbox[:,1], cbox[:,0]) * 180 / np.pi  # Compute the angles from the center to each corner
    # Sort the corners of box counterclockwise (sort box elements according the order of ang).
    box = box[ang.argsort()]
    ############################################################################
    # Reorder points: top-left, top-right, bottom-left, bottom-right
    coor = np.float32([box[0], box[1], box[3], box[2]])
    return coor
input_image2 = cv2.imread("card_in_polygon_format.jpeg", cv2.IMREAD_GRAYSCALE)  # Read image as Grayscale
input_image2 = cv2.threshold(input_image2, 0, 255, cv2.THRESH_OTSU)[1]  # Convert to binary image (just in case...)
# orig_im_coor = np.float32([[640, 184], [1002, 409], [211, 625], [589, 940]])
# Find the corners of the card, and sort them
orig_im_coor = find_corners(input_image2)
height, width = 450, 350
new_image_coor =  np.float32([[0, 0], [width, 0], [0, height], [width, height]])
P = cv2.getPerspectiveTransform(orig_im_coor, new_image_coor)
perspective = cv2.warpPerspective(input_image2, P, (width, height))
cv2.imshow("Perspective transformation", perspective)
cv2.waitKey(0)
cv2.destroyAllWindows()
Quadrangle fitting (not most accurate):
