I've dataset as in following format :
df = pd.read_csv("data_processing.csv")
df
    user_id volume
0   a       {"BTCUSDT":1000,"USDTINR":20}
1   b       {"BTCINR":30,"USDTINR":10,"ETHINR":15}
2   c       {"XRPINR":10,"ETHUSDT":500,"XRPUSDT":200}
3   d       {"ETHINR":5}
I want to convert the above dataset in following format :
df
   user_id  symbol  volume
0   a       BTCUSDT 1000.0
1   a       USDTINR 20.0
2   b       USDTINR 10.0
3   b       BTCINR  30.0
4   b       ETHINR  15.0
5   c       XRPINR  10.0
6   c       ETHUSDT 500.0
7   c       XRPUSDT 200.0
8   d       ETHINR  5.0'
What I've tried till now :
Converted string to dict for "volume" column
df['volume'] = df['volume'].map(eval)
converted volume column to from dict to all the keys in one column and all the values in another column
df2 = pd.json_normalize(df['volume']).stack().to_frame(name='volume').reset_index()
But now I'm finding it difficult to map the user_id's to the output of above dataframe.
 
     
     
    