I have 2 dataframes:
df1:
    RB  BeginDate   EndDate    Valindex0
0   00  19000100    19811231    45
1   00  19820100    19841299    47
2   00  19850100    20010699    50
3   00  20010700    99999999    39
df2:
    RB  IssueDate   gs
0   L3  19990201    8
1   00  19820101    G
2   48  19820101    G
3   50  19820101    G
4   50  19820101    G
how to merge this 2 dataframes in the condition of:
if df1['BeginDate'] <= df2['IssueDate'] <= df1['EndDate'] and df1['RB']==df2['RB']:
    merge the value of df1['Valindex0'] to df2
The output should be:
df2:
    RB  IssueDate   gs  Valindex0
0   L3  19990201    8   None
1   00  19820101    G   47    # df2['RB']==df1['RB'] and df2['IssueDate'] between df1['BeginDate'] and df1['EndDate'] of this row
2   48  19820101    G   None
3   50  19820101    G   None
4   50  19820101    G   None
I know one method to do this,but it is very slow:
conditions = []
for index, row in df1.iterrows():
    conditions.append((df2['IssueDate']>= df1['BeginDate']) &
                      (df2['IssueDate']<= df1['BeginDate'])&
                      (df2['RB']==df1['RB']))
    df2['Valindex0'] = np.select(conditions, df1['Valindex0'], default=None)
Any faster solution?
 
     
     
    
