I have 10000 jsons with different ids each has 10000 names. How to flatten nested arrays by merging values by int or str in pyspark?
EDIT: I have added column name_10000_xvz to explain better data structure. I have updated Notes, Input df, required output df and input json files as well.
Notes:
- Input dataframe has more than 10000 columns name_1_a, name_1000_xx so column(array) names can not be hardcoded as it will requires to write 10000 names
id,date,valhas always the same naming convention across all columns and all jsons- array size can vary but
date,valare always there so they can be hardcoded datecan be different in each array, for example name_1_a starts with 2001, but name_10000_xvz for id == 1 starts with 2000 and finnish with 2004, however for id == 2 starts with 1990 and finish with 2004
Input df:
root
|-- id: long (nullable = true)
|-- name_10000_xvz: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- date: long (nullable = true)
| | |-- val: long (nullable = true)
|-- name_1_a: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- date: long (nullable = true)
| | |-- val: long (nullable = true)
|-- name_1_b: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- date: long (nullable = true)
| | |-- val: long (nullable = true)
|-- name_2_a: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- date: long (nullable = true)
| | |-- val: long (nullable = true)
+---+------------------------------------------------------------------------+---------------------------------+---------------------------------+------------------------------------+
|id |name_10000_xvz |name_1_a |name_1_b |name_2_a |
+---+------------------------------------------------------------------------+---------------------------------+---------------------------------+------------------------------------+
|2 |[{1990, 39}, {2000, 30}, {2001, 31}, {2002, 32}, {2003, 33}, {2004, 34}]|[{2001, 1}, {2002, 2}, {2003, 3}]|[{2001, 4}, {2002, 5}, {2003, 6}]|[{2001, 21}, {2002, 22}, {2003, 23}]|
|1 |[{2000, 30}, {2001, 31}, {2002, 32}, {2003, 33}] |[{2001, 1}, {2002, 2}, {2003, 3}]|[{2001, 4}, {2002, 5}, {2003, 6}]|[{2001, 21}, {2002, 22}, {2003, 23}]|
+---+------------------------------------------------------------------------+---------------------------------+---------------------------------+------------------------------------+
Required output df:
+---+---------+----------+-----------+---------+----------------+
|id | date | name_1_a | name_1_b |name_2_a | name_10000_xvz |
+---+---------+----------+-----------+---------+----------------+
|1 | 2000 | 0 | 0 | 0 | 30 |
|1 | 2001 | 1 | 4 | 21 | 31 |
|1 | 2002 | 2 | 5 | 22 | 32 |
|1 | 2003 | 3 | 6 | 23 | 33 |
|2 | 1990 | 0 | 0 | 0 | 39 |
|2 | 2000 | 0 | 0 | 0 | 30 |
|2 | 2001 | 1 | 4 | 21 | 31 |
|2 | 2002 | 2 | 5 | 22 | 32 |
|2 | 2003 | 3 | 6 | 23 | 33 |
|2 | 2004 | 0 | 0 | 0 | 34 |
+---+---------+----------+-----------+---------+----------------+
To reproduce input df:
df = spark.read.json(sc.parallelize([
"""{"id":1,"name_1_a":[{"date":2001,"val":1},{"date":2002,"val":2},{"date":2003,"val":3}],"name_1_b":[{"date":2001,"val":4},{"date":2002,"val":5},{"date":2003,"val":6}],"name_2_a":[{"date":2001,"val":21},{"date":2002,"val":22},{"date":2003,"val":23}],"name_10000_xvz":[{"date":2000,"val":30},{"date":2001,"val":31},{"date":2002,"val":32},{"date":2003,"val":33}]}""",
"""{"id":2,"name_1_a":[{"date":2001,"val":1},{"date":2002,"val":2},{"date":2003,"val":3}],"name_1_b":[{"date":2001,"val":4},{"date":2002,"val":5},{"date":2003,"val":6}],"name_2_a":[{"date":2001,"val":21},{"date":2002,"val":22},{"date":2003,"val":23}],"name_10000_xvz":[{"date":1990,"val":39},{"date":2000,"val":30},{"date":2001,"val":31},{"date":2002,"val":32},{"date":2003,"val":33},{"date":2004,"val":34}]}}"""
]))
Useful links: