Using cosine similarity. sklearn text feature extraction
For a large datasets calculating cosine similarity may be slow. Take a look at: pip install sparse_dot_topn
see: https://www.sun-analytics.nl/posts/2017-07-26-boosting-selection-of-most-similar-entities-in-large-scale-datasets/
pip install scikit-learn
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# https://stackoverflow.com/a/27086669/8615419
# as a preprocessor for TfidfVectorizer
def clean_corpus(s: str):
    """return clean corpus -- replaced any non word chars with space"""
    for ch in ['\\','`','*','_','{','}','[',']','(',')','>','#','+','-','.','!','$','\'',',']:
        if ch in s:
            s = s.replace(ch, " ")
    return s.lower()
# why n-grams?
# this should account for any word misspellings
def fit_vectorizer(corpus: np.array, n: int = 3):
    vectorizer = TfidfVectorizer(analyzer="char_wb", preprocessor=clean_corpus, ngram_range=(n, n))
    tfidf = vectorizer.fit_transform(corpus)
    return tfidf, vectorizer
def cosine_similarity_join(a, b, col_name):
    a_len = len(a[col_name])
    # all of the "documents" in a 1D array
    corpus = np.concatenate([a[col_name].to_numpy(), b[col_name].to_numpy()])
    tfidf, vectorizer = fit_vectorizer(corpus, 3)
    # print(vectorizer.get_feature_names())
    # in this matrix each row represents the str in a and the col is the str from b, value is the cosine similarity
    res = cosine_similarity(tfidf[:a_len], tfidf[a_len:])
    print('in this matrix each row represents the str in a and the col is the str from b')
    print(res)
    res_series = pd.DataFrame(res).stack().rename("score")
    res_series.index.set_names(['a', 'b'], inplace=True)
    # print(res_series)
    
    # join scores to b
    b_scored = pd.merge(left=b, right=res_series, left_index=True, right_on='b').droplevel('b')
    # print(b_scored.sort_index())
   
    # find the indices on which to match, (highest score in each row)
    # best_match = np.argmax(res, axis=1)
    
    res = pd.merge(left=a, right=b_scored, left_index=True, right_index=True, suffixes=('', '_b'))
    print(res)
    df = res.reset_index()
    df = df.iloc[df.groupby(by="index")["score"].idxmax()].reset_index(drop=True)
    return df.drop(columns=["City_b", "score", "index"])  
def test(df):
    expected = pd.DataFrame(
        {
            "City": ["San Francisco, CA", "Oakland, CA"],
            "Val": [1, 2],
            "Geo": ["geo1", "geo1"],
        }
    )
    print(f'{"expected":-^70}')
    print(expected)
    print(f'{"res":-^70}')
    print(df)
    assert expected.equals(df)
if __name__ == "__main__":
    a = pd.DataFrame({"City": ["San Francisco, CA", "Oakland, CA"], "Val": [1, 2]})
    b = pd.DataFrame(
        {"City": ["San Francisco-Oakland, CA", "Salinas, CA"], "Geo": ["geo1", "geo2"]}
    )
    print(f'\n\n{"n-gram cosine similarity":-^70}')
    res = cosine_similarity_join(a, b, col_name="City")
    test(res)