how to apply on a column with many rows and not only on the first row? it works only for df[0] for example but not on all the rows. What can I do instead of split? and how to apply?
I currantly get a list of words of only the first cell (which is a long text). I need to get the list of all the rows
I get error:
AttributeError                            Traceback (most recent call last)
<ipython-input-400-30a976cb67ef> in <module>
     73 
     74 
---> 75 new_data=Clean_stop_words(df["Text"])
     76 
     77 print(new_data, end=",")
<ipython-input-400-30a976cb67ef> in Clean_stop_words(data)
     54 #     for i in range(0:500):
     55 #         data=data.apply(str)
---> 56     data_split = data.split(' ')
     57     #print(data_split)
     58 #     for word in data:
~\anaconda\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
   5128             if self._info_axis._can_hold_identifiers_and_holds_name(name):
   5129                 return self[name]
-> 5130             return object.__getattribute__(self, name)
   5131 
   5132     def __setattr__(self, name: str, value) -> None:
AttributeError: 'Series' object has no attribute 'split'
def Clean_stop_words(data):
    stemmer = PorterStemmer()
    stop_words=stopwords.words('english')
    new_data=[]
    #print(data)
#     for i in range(0:500):
#         data=data.apply(str)
    data_split = data.split(' ')
    #print(data_split)
#     for word in data:
#         print(word)  
    for word in data_split:
        np.char.lower(word)
    #print(data_split)
    word = re.sub('[^A-Za-z0-9]+', '', word)
    for word in data_split:
        if word not in stop_words:
            word1=stemmer.stem(word)
            #print(word1)
            new_data.append(word1)
    symbols = "!\"#$%&()*+-./:;<=>?@[\]^_`{|}~\n"
    for i in symbols:
        new_data= np.char.replace(new_data, i, ' ')   
    return new_data    
    
new_data=Clean_stop_words(df["Text"])    
#new_data=Clean_stop_words(df["Text"][0])
print(new_data, end=",")
