I am trying to evaluate some linear discriminant models with the package caret. The problem is that when I use the predict function it predicts less values than the ones that are given in the data fame. For example, my testing sample has 664 observations, but only 550 values are predicted. I don't know why this is happening, and the weidest thing is that when I use a lda model from the package MASS this doesn't happen.
I leave a sample of my code:
hoja_excel <- function(nombre_libro, nombre_hoja, modelo, datos, submuestra) {
  libro <- createWorkbook(type = "xlsx")
  hoja <- createSheet(libro, sheetName = nombre_hoja)
  datos_t <- datos
  modelo_t <- modelo
  prediccion <- predict(modelo_t, datos_t)
  if (submuestra == "No") {
    correctos <- ifelse(datos_t$d_evento == prediccion$class, 1, 0)
    addDataFrame(modelo_t$scaling, hoja, startRow = 1, startColumn = 1)
    addDataFrame(prediccion$class, hoja, startRow = 1, startColumn = 5, 
                 row.names = FALSE)
    addDataFrame(prediccion$posterior, hoja, startRow = 1, startColumn = 7, 
                 row.names = FALSE)
  } else if (submuestra == "Si") {
    correctos <- ifelse(datos_t$d_evento == prediccion, 1, 0)  
    addDataFrame(modelo_t$finalModel$scaling, hoja, startRow = 1, startColumn = 1)
    addDataFrame(prediccion, hoja, startRow = 1, startColumn = 5, row.names = FALSE)
  } else {
    print("Valor no válido para submuestra")
    break
  }
  addDataFrame(correctos, hoja, startRow = 1, startColumn = 6, row.names = FALSE)
  addDataFrame(datos_t$d_evento, hoja, startRow = 1, startColumn = 4, 
               row.names = FALSE)
  direccion <- paste("C:\\Users\\Documents\\Indicador riesgo quiebra\\Bases R\\",
                     gsub(" ", "", paste(nombre_libro, ".xlsx")))
  saveWorkbook(libro, direccion)
} 
where modelo_t is a lda model using:
train_index <- createDataPartition(datos_temporal$d_evento, p = 0.8, list = FALSE)
training <- datos_temporal[train_index,]
testing <- datos_temporal[-train_index,]
control <- trainControl(method = "boot", number = 100)
indice_fila <- as.data.frame(as.numeric(row.names(training)))
colnames(indice_fila)[1] <- "x"
indice_fila <- filter(indice_fila, x > 103)
por_quitar <- sample(indice_fila$x, 457)
temp_cambio <- training[por_quitar,]
training <- training[!(as.numeric(row.names(training)) %in% por_quitar),]
  sum(training$Concurso)
  testing <- rbind(testing, temp_cambio)
modelo_temp <- train(as.factor(d_evento) ~  WCTA + RETA_div + EBITTA + MKTTL, data = training, method = "lda", trControl = control)
The data looks like this:
 d_evento         WCTA     RETA_div       EBITTA        MKTL
  [1,]        1  0.102328417  0.172985238  0.023823373  0.28150867
  [2,]        1  0.104033108  0.179734113  0.016205173  0.29846677
  [3,]        1  0.062691788  0.176511714  0.016526565  0.27814601
  [4,]        1 -0.006734752  0.176793439 -0.002690483  0.13984261
  [5,]        1 -0.531363807 -0.126163036 -0.370620144  0.09432537
  [6,]        1 -0.290474435 -0.211740091 -0.011615337  0.36301834
  [7,]        1 -0.466771743 -0.512553803 -0.224013967  0.25744777
  [8,]        1 -0.479582320 -0.511735167  0.002644372  0.09629447
  [9,]        1 -0.505509630 -0.515334951  0.000907695  0.08729133
 [10,]        1 -0.505772731 -0.519775895  0.003711561  0.07597238
 [11,]        1 -0.081045926  0.021407478  0.010135867  0.12172863
 [12,]        1 -0.089806538 -0.004288951  0.006143543  0.07635110
 [13,]        1 -0.089806538 -0.004288951  0.006143543  0.07635110
 [14,]        1 -0.089658569 -0.003487434  0.007065595  0.05881547
 [15,]        1 -0.071556860  0.000327249  0.009000073  0.04642630
 [16,]        1 -0.189795369 -0.082028980 -0.011347470          NA
 [17,]        1 -0.211664986  0.089646083 -0.013821279          NA
 [18,]        1 -0.240479274  0.076507841 -0.009437117          NA
 [19,]        1 -0.304366126 -0.154540326 -0.009604424          NA
 [20,]        1 -0.375355273 -0.199723398 -0.024588066          NA
 [21,]        1 -0.029508414 -0.403511498 -0.019443447          NA
 [22,]        1 -0.091914540 -0.488177906 -0.048564395          NA
 [23,]        1 -0.298168224 -0.732771269 -0.172331020          NA
 [24,]        1 -0.359041383 -0.790119097 -0.039597788          NA
 [25,]        1 -0.363742236 -0.803537586 -0.006065854          NA
 [26,]        1  0.589143817  0.028219641  0.026082170  0.32713918
 [27,]        1  0.593191389  0.036273767  0.020408613  0.26683046
 [28,]        1  0.173117821  0.235442662 -0.001729736  0.24438442
 [29,]        1  0.585950807  0.003848530  0.003906928  0.16745067
 [30,]        1  0.096615605 -0.240512670 -0.267238705  0.07577302
 [31,]        1 -0.236399326 -0.198074835 -0.082469329  0.02060548
 [32,]        1 -0.232475389 -0.162193604  0.008983155  0.02490547
 [33,]        1 -0.264922798 -0.195772340  0.004671963  0.01937249
 [34,]        1 -0.252437477 -0.177531447  0.008358117  0.01538876
 [35,]        1 -0.309372439 -0.157687566 -0.014696488  0.01566678
 [36,]        1  0.066139324  0.065790059  0.012793123          NA
 [37,]        1  0.019243390 -0.021989191  0.005530848          NA
 [38,]        1 -0.322167102 -0.076949045  0.009095588          NA
 [39,]        1 -0.339073771 -0.088969769  0.004273673          NA
 [40,]        1 -0.341548755 -0.095563596  0.004611532          NA
 [41,]        1  0.119794925 -0.362801650  0.017772949  0.12511261
 [42,]        1  0.117203237 -0.358876513  0.013895464  0.17573193
 [43,]        1  0.118311588 -0.349316342  0.011311633  0.16578745
 [44,]        1  0.108041129 -0.354728885  0.007139983  0.18585194
 [45,]        1  0.116226413  0.176991083  0.008437309  0.14523250
 [46,]        1 -0.417426682 -0.351217302 -0.001490772          NA
 [47,]        1 -0.521614557 -0.372067598 -0.004148459          NA
 [48,]        1 -0.556880835 -0.410263995 -0.010783372          NA
 [49,]        1 -0.538665877 -0.516306250 -0.015715087          NA
 [50,]        1 -0.552574629 -0.539557001  0.000512035          NA
 [51,]        1 -0.107124224 -0.198470866  0.009393807  0.37339624
 [52,]        1 -0.138723041 -0.180931099  0.009621652  0.37314090
 [53,]        1 -0.185465637 -0.209724465  0.007502654  0.15136401
 [54,]        1 -0.215398142 -0.194322294  0.005454704  0.10933219
 [55,]        1 -0.349924680 -0.181051506  0.007898349  0.10242043
 [56,]        1 -0.083508805 -0.234198161  0.014025553  0.21949797
 [57,]        1 -0.111655586 -0.153118296  0.000395625  0.20500320
 [58,]        1 -0.525398938 -0.204706959  0.004258002  0.22263430
 [59,]        1 -0.515984436  0.006542066  0.010284407  0.06157929
 [60,]        1 -0.472184418 -0.077255180  0.025169087  0.06360715
 [61,]        1 -0.915619436 -0.571898297 -0.964069641  0.06954642
 [62,]        1 -0.976531176 -0.604232871  0.002430217  0.07139988
 [63,]        1 -1.065185735 -0.769319144 -0.057748756  0.06288110
 [64,]        1 -1.105191220 -0.809208711 -0.008095136  0.06166852
 [65,]        1 -1.178063409 -0.878734357 -0.039329161  0.06082261
 [66,]        1 -0.535907882 -0.222222213  0.005872205  0.08846701
 [67,]        1 -0.589313029 -0.258109442  0.008729062  0.05007868
 [68,]        1 -0.551131177 -0.238096813  0.009023884  0.07187476
 [69,]        1 -0.608438635 -0.283387832  0.013695457  0.08705984
 [70,]        1 -0.535464916 -0.262771019  0.008364580  0.09314005
 [71,]        1 -0.452234218 -0.215778265 -0.000239063  0.02542849
 [72,]        1 -0.464330590 -0.218106230  0.002584991  0.03582109
 [73,]        1 -0.563726013 -0.224167223  0.000208095  0.04189381
 [74,]        1 -0.528027421 -0.198080661 -0.003679190  0.04983422
 [75,]        1 -0.575153818 -0.285992633 -0.005243519  0.03923600
 [76,]        1 -0.066170557 -0.239054398 -0.013494570  0.26130971
 [77,]        1 -0.066170557 -0.233443586  0.014990892  0.26130971
 [78,]        1 -0.121724697 -0.303849542 -0.040604471  0.28052208
 [79,]        1 -0.154056271 -0.343746431 -0.012184790  0.20584284
 [80,]        1 -0.147762785 -0.565698665 -0.020414877  0.17744193
 [81,]        0  0.150063189  0.474291335  0.062842129  4.06784731
 [82,]        0  0.216434477  0.400717535  0.153657901  5.36813447
 [83,]        0  0.227828887  0.414654219  0.060695982  6.78856190
 [84,]        0  0.074576430  0.452425070  0.048256387  3.48195705
 [85,]        0  0.075965420  0.053845661  0.032662793  4.23785100
 [86,]        0  0.068738217  0.179754934  0.026999530  5.81196756
 [87,]        0  0.002872408  0.176252411  0.036614004  5.22779285
 [88,]        0 -0.004109057  0.200224409  0.039233767  3.28458093
 [89,]        0  0.059667688  0.213209500  0.026436922  2.81650866
 [90,]        0  0.097700665  0.250799825  0.022532687  2.15307406
 [91,]        0  0.069989183  0.279071982  0.022807557  1.90599648
 [92,]        0  0.068567070  0.597104453  0.007370365  1.45980346
 [93,]        0 -0.055451852  0.005400669  0.006371529  0.80260752
 [94,]        0  0.063809942  0.002149151  0.003025512  1.62787332
 [95,]        0  0.156181914  0.148482202  0.018242339  1.54990111
 [96,]        0  0.191253103  0.152796761  0.028705654  1.27834785
 [97,]        0  0.179348459  0.026865682  0.021577617  1.10293585
 [98,]        0  0.220742857  0.257825369  0.025130265  1.38404540
 [99,]        0  0.197537878  0.247273292  0.032118478  1.17929573
[100,]        0  0.201030587  0.289748972  0.023089870  1.45426949
[101,]        0  0.198196754  0.251331400  0.018783216  0.78407849
[102,]        0  0.396957178  0.156756494  0.011094761  6.50241941
[103,]        0  0.417743322  0.192454416  0.021462730  4.17671640
[104,]        0  0.317611590  0.220966177  0.019126507  3.14608329
[105,]        0  0.292430463  0.236581805  0.027051067  1.23086306
[106,]        0  0.121646123  0.264528001  0.015549968  0.43782518
[107,]        0  0.254774431  0.313459475  0.020259342  0.90682847
[108,]        0  0.057719295  0.376094461  0.018757697  0.70161209
[109,]        0  0.111145476  0.074000580  0.021489573  0.50180140
[110,]        0  0.129263860  0.113104859  0.025172665  0.77670065
[111,]        0  0.161287802  0.364706919  0.027780009  1.71408772
[112,]        0  0.102491082  0.336435093  0.019495483  1.87903084
[113,]        0  0.102749342  0.179662445  0.019143735  0.66004885
[114,]        0  0.070178639  0.181968540  0.015834552  0.56760009
[115,]        0  0.060546180  0.144755108  0.023018262  0.41864727
[116,]        0  0.055087904  0.166166504  0.012629684  0.33324991
[117,]        0  0.303542935  0.156757706  0.031636761  1.64602627
[118,]        0  0.289001786  0.153547671 -0.016374501  1.76725379
[119,]        0  0.279778721  0.153493561  0.020405527  1.58651203
[120,]        0  0.236821990  0.133645930  0.022444817  1.26843879
[121,]        0  0.146744855  0.052687622  0.029447256  0.89323894
[122,]        0  0.077842968  0.127891750  0.014711354  0.71416451
[123,]        0  0.223389189  0.181411663  0.048342490  0.59089094
[124,]        0  0.011758736  0.293931328  0.036917562  2.87365445
[125,]        0  0.057638756  0.262690499  0.054119272  4.66983166
[126,]        0 -0.019033595  0.302711214  0.057767564  6.10251167
[127,]        0 -0.031502878  0.221783981  0.050314677  2.05150776
[128,]        0  0.053267372  0.068925682  0.042385349  1.91082180
[129,]        0 -0.057991241  0.028315757  0.040734790  1.38620499
[130,]        0 -0.036327184  0.103362962  0.036318668  0.84866029
[131,]        0 -0.068812042  0.109087403  0.020497603  0.58923088
[132,]        0 -0.075085174  0.138765553  0.023057622  0.86040295
[133,]        0 -0.053108777  0.129443014  0.023743674  0.89238510
[134,]        0 -0.109530408  0.173890428  0.025422135  0.76808692
[135,]        0  0.820570693  0.489072341  0.038025378  3.80283909
[136,]        0  0.755131402  0.480378231  0.023438901  1.83815578
[137,]        0  0.784152123  0.466333064  0.009787795  0.73929691
[138,]        0  0.770736924  0.535517543  0.010150374  0.99090286
[139,]        0  0.765962039  0.582485921  0.003677606  1.21952273
[140,]        0  0.799087764  0.590003093  0.012371284  1.41523522
[141,]        0  0.801033182  0.603842470  0.014718538  1.26282958
[142,]        0  0.655760851  0.603277797  0.013366921  1.29486993
[143,]        0  0.655626473  0.590216820  0.012908812  0.67140092
[144,]        0 -0.000931802  0.123956770 -0.009416716 17.37868387
[145,]        0  0.062881194  0.007211106 -0.009665915 41.78087232
[146,]        0  0.060060119  0.050727308  0.007171143 38.72104468
[147,]        0  0.044467119  0.036380079  0.003481140 60.80616220
[148,]        0  0.046114372  0.053310689  0.001938528 31.03505882
[149,]        0  0.160540154  0.069396180  0.012203609  8.54585817
[150,]        0  0.031013787  0.031720938  0.003055935  2.95383008
[151,]        0  0.132943141  0.012581698  0.005493957  0.36059554
[152,]        0  0.471412105  0.059070746  0.010334952  1.42581109
[153,]        0  0.479138052  0.060875122  0.013471127  1.45272493
[154,]        0  0.422477019  0.052316363  0.012458129  1.54526316
[155,]        0  0.388659477  0.052890384  0.005573127  1.95571714
[156,]        0  0.094920272  0.089369140  0.012778447 11.38579900
[157,]        0  0.118271048  0.118019690  0.018606786 11.99411451
[158,]        0  0.112967304  0.040162629  0.016856771  6.17653857
[159,]        0  0.118361014  0.101731873  0.026049746  5.51451976
[160,]        0  0.133620815  0.166899626  0.036407153  9.23376411
[161,]        0  0.088069784  0.282453608  0.030611453  9.54196168
[162,]        0  0.116470349  0.439463793  0.044199097 13.61400937
[163,]        0  0.090907488  0.382101833  0.041835183  8.40030914
[164,]        0  0.047117508  0.333423687  0.032047521  4.36771819
[165,]        0  0.096818844  0.392443561  0.035572024  4.76322219
[166,]        0 -0.209518025 -0.067392822  0.001041811  0.16838672
[167,]        0 -0.023669209  0.254000499  0.020112737  0.33192460
[168,]        0  0.083063378  0.240007756  0.004917441  0.77924814
[169,]        0  0.177073698  0.477966128  0.057321814  2.36844916
[170,]        0  0.159060297  0.210387595 -0.003819296  6.75228878
[171,]        0  0.169452935  0.278012721  0.031039004  2.34712579
[172,]        0  0.154945204  0.333207323  0.002886411  1.09408749
[173,]        0 -0.048780622  0.215153508  0.018259530  0.72343952
[174,]        0  0.055472408  0.285980563  0.006076962  0.31754091
[175,]        0  0.142383229  0.319639681  0.038277115  0.89486568
[176,]        0  0.077797895  0.345464464  0.031875647  0.72488824
[177,]        0  0.022357482  0.323707987  0.012566844  0.35923083
[178,]        0  0.346321819  0.941763870  0.015834019  3.93125929
[179,]        0  0.371809560  0.625682702  0.026887381  4.11670803
[180,]        0  0.298619068  0.598086800  0.001809750  2.89054586
[181,]        0  0.374593821  0.622298863 -0.010043981  3.12315505
[182,]        0  0.369303660  0.610048598  0.027247316  2.38288866
[183,]        0  0.379150968  0.643351880  0.014669807  3.03208857
[184,]        0  0.410197501  0.647344411  0.023170184  3.92832805
[185,]        0  0.403354158  0.650000682  0.050002996  3.75353977
[186,]        0  0.396623201  0.660019793  0.031378145  3.82157439
[187,]        0  0.404596355  0.676637410  0.021312227  3.44883813
[188,]        0  0.096942055  0.585831667  0.021951244  1.94042889
[189,]        0  0.102554188  0.670393761  0.021269146  3.90273154
[190,]        0  0.076417187  0.564216020  0.023645144  2.84388566
[191,]        0  0.080883097  0.524531395  0.016433972  2.60734449
[192,]        0  0.081513318  0.603303084  0.022487537  3.65309376
[193,]        0  0.024881995  0.610932352  0.023067898  5.39627899
[194,]        0  0.098384456  0.437738944  0.019957790  2.17333603
[195,]        0  0.019979034  0.461563686  0.020225360  2.24382732
[196,]        0  0.105557738  0.359034869  0.020744405  1.74355384
[197,]        0 -0.015178663  0.326976028  0.020274742  1.43860776
[198,]        0  0.206363998  0.079733555  0.001920620  1.39776775
[199,]        0  0.094099801  0.070677090  0.013279499  1.18434471
[200,]        0  0.066358250 -0.019835931  0.020976708  2.46798269
