I can transform the target column to desired ordered numerical value using categorical encoding and ordinal encoding. But I am unable to perform inverse_transform as an error is showing which is written below.
import pandas as pd
import category_encoders as ce
from sklearn.preprocessing import OrdinalEncoder
lst = [ 'BRANCHING/ELONGATION', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'MID', 'MID',  'ADVANCED/TILLERING',
        'FLOWERING', 'FLOWERING', 'FLOWERING', 'SEEDLING/EMERGED']
  
filtered_df = pd.DataFrame(lst, columns =['growth_state'])
filtered_df['growth_state'].value_counts()
EARLY                   4
FLOWERING               3
MID                     2
ADVANCED/TILLERING      1
SEEDLING/EMERGED        1
BRANCHING/ELONGATION    1
Name: growth_state, dtype: int64
dictionary = [{'col': 'growth_state',
               'mapping':{'SEEDLING/EMERGED':0, 'EARLY':1, 'MID':2,
                          'ADVANCED/TILLERING':3, 'BRANCHING/ELONGATION':4, 'FLOWERING':5 }}]
# instiating encoder
encoder = ce.OrdinalEncoder(cols = 'growth_state', mapping= dictionary)
filtered_df['growth_state'] = encoder.fit_transform(filtered_df['growth_state'])
filtered_df
    growth_state
0   4
1   1
2   1
3   1
4   1
5   2
6   2
7   3
8   5
9   5
10  5
11  0
But when I perform inverse_transform:
newCol = encoder.inverse_transform(filtered_df['growth_state'])
AttributeError                            Traceback (most recent call last)
<ipython-input-26-b6505b4be1e1> in <module>
----> 1 newCol = encoder.inverse_transform(filtered_df['growth_state'])
d:\users\tiwariam\appdata\local\programs\python\python36\lib\site-packages\category_encoders\ordinal.py in inverse_transform(self, X_in)
    266         for switch in self.mapping:
    267             column_mapping = switch.get('mapping')
--> 268             inverse = pd.Series(data=column_mapping.index, index=column_mapping.values)
    269             X[switch.get('col')] = X[switch.get('col')].map(inverse).astype(switch.get('data_type'))
    270 
AttributeError: 'dict' object has no attribute 'index'
Note: the above column is a target column, I could have applied a label encoder as this is a classification-related problem. But I have adopted the above combination of categorical and ordinal encoding as variables are ordered in nature.
 
    