I 'm writing a large number plus function, using arrays
#define MAXLEN 10
int * plus(int *a, int *b) {
    int *result;
    int tmp;
    int add = 0;
    result = (int *)malloc(MAXLEN); // A breakpoint exception was triggered
    for (int i = MAXLEN - 1; i >= 0; i--) {
        tmp = a[i] + b[i] + add;
        add = 0;
        if (tmp / 10) {
            add = tmp / 10;
            tmp = tmp % 10;
        }
        result[i] = tmp;
    }
    return result;
}
There's always exception on the malloc line, but in other functions the malloc() works well.
How does it happened?
Here are all the codes:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAXLEN 10
int * plus(int *a, int *b) {
    int *result;
    int tmp;
    int add = 0;
    result = (int *)malloc(MAXLEN);
    for (int i = MAXLEN - 1; i >= 0; i--) {
        tmp = a[i] + b[i] + add;
        add = 0;
        if (tmp / 10) {
            add = tmp / 10;
            tmp = tmp % 10;
        }
        result[i] = tmp;
    }
    return result;
}
void deliver(int *a, int *b) {
    for (int i = 0; i < MAXLEN; i++) {
        a[i] = b[i];
    }
}
void init_int(int *a) {
    for (int i = 0; i < MAXLEN; i++) {
        a[i] = 0;
    }
}
int * numWays(int n) {
    int *a, *b, *c, *sum;
    int j;
    a = (int *)malloc(MAXLEN);
    b = (int *)malloc(MAXLEN);
    c = (int *)malloc(MAXLEN);
    init_int(a);
    init_int(b);
    init_int(c);
    init_int(sum);
    a[MAXLEN - 1] = 1;
    b[MAXLEN - 1] = 1;
    c[MAXLEN - 1] = 2;
    for (int i = 0; i < n; i++) {
        sum = plus(plus(a, b), c);
        deliver(a, b);
        deliver(b, c);
        deliver(c, sum);
    }
    return a;
}
int main()
{
    int print_flag = 0;
    int *num;
    num = (int *)malloc(MAXLEN);
    num = numWays(4);
    for (int i = 0; i < MAXLEN; i++) {
        if (num[i]) {
            print_flag = 1;
        }
        if (print_flag) {
            printf("%d", num[i]);
        }
    }
    printf("\n");
    return 0;
}
It's a question about how many ways can a frog jump onto n steps if it can jump 1, 2 or three steps each time, and I want the exact number.
 
    