Dataframe
    TYPE  WEEK  VALUE1  VALUE2
0  Type1     1       1       1
1  Type2     2       2       2
2  Type3     3       3       3
3  Type4     4       4       4
import pandas as pd
import numpy as np
df = {'TYPE' : pd.Series(['Type1','Type2','Type3','Type4']),
    'WEEK' : pd.Series([1, 2, 3, 4]),
    'VALUE1' : pd.Series([1, 2, 3, 4]),
    'VALUE2' : pd.Series([1, 2, 3, 4])
}
df = pd.DataFrame(df)
df = pd.pivot_table(df,index="TYPE",columns="WEEK", values=['VALUE1','VALUE2']).reset_index()
df2 = df.swaplevel(0,1,axis=1).reset_index()
Output
WEEK index             1      2      3      4      1      2      3      4
             TYPE VALUE1 VALUE1 VALUE1 VALUE1 VALUE2 VALUE2 VALUE2 VALUE2
0        0  Type1    1.0    NaN    NaN    NaN    1.0    NaN    NaN    NaN
1        1  Type2    NaN    2.0    NaN    NaN    NaN    2.0    NaN    NaN
2        2  Type3    NaN    NaN    3.0    NaN    NaN    NaN    3.0    NaN
3        3  Type4    NaN    NaN    NaN    4.0    NaN    NaN    NaN    4.0
Expected structure output
WEEK  TYPE  | VALUE11  VALUE21 | VALUE12  VALUE22 | VALUE13  VALUE23 | VALUE14  VALUE24  
0     Type1 |                  |                  |                  |
1     Type2 |                  |                  |                  | 
2     Type3 |                  |                  |                  |
3     Type4 |                  |                  |                  |
Approaches in thought:
- Reorder the structure. (I have tried swaplevel()as above but cannot attain the expected output)
- Join the columns name eg. "Value11" by "Value1" + "1" I have looked through several examples from the internet but cannot come up with anything.
 
     
    