Here are 2 solutions:
- a tidyverse solution which looks a bit more complex than simply adding the 2 dataframes together, but is safer since it will matches Var name and ID before adding.
- a base R solution which is simple, but requires the order and variable names to match precisely
library(tidyverse)
set.seed(1)
df <- data.frame(ID = seq.int(1,10),
                 V1=runif(10, 0, 100),
                 V2=runif(10, 0, 100),
                 V1N=runif(10, 0, 100),
                 V2N=runif(10, 0, 100))
   ID        V1       V2       V1N      V2N
1   1 26.550866 20.59746 93.470523 48.20801
2   2 37.212390 17.65568 21.214252 59.95658
3   3 57.285336 68.70228 65.167377 49.35413
4   4 90.820779 38.41037 12.555510 18.62176
5   5 20.168193 76.98414 26.722067 82.73733
6   6 89.838968 49.76992 38.611409 66.84667
7   7 94.467527 71.76185  1.339033 79.42399
8   8 66.079779 99.19061 38.238796 10.79436
9   9 62.911404 38.00352 86.969085 72.37109
10 10  6.178627 77.74452 34.034900 41.12744
df %>%
    pivot_longer(-ID) %>%                     # Pivot data to long form
    mutate(name = gsub('N$', '', name)) %>%   # Remove 'N' so matching Vars will combine
    group_by(ID, name) %>%                    # Group identical Vars and IDs
    summarise(value = sum(value)) %>%         # Sum up these matching values
    pivot_wider()                             # Pivot wide with 1 column per Var
      ID    V1    V2
   <int> <dbl> <dbl>
 1     1 120.   68.8
 2     2  58.4  77.6
 3     3 122.  118. 
 4     4 103.   57.0
 5     5  46.9 160. 
 6     6 128.  117. 
 7     7  95.8 151. 
 8     8 104.  110. 
 9     9 150.  110. 
10    10  40.2 119. 
If you can ensure that the dimensions and ordering of the 2 tables are identical, you can do this simply in baseR with +:
# Split the tables if necessary:
rownames(df) <- df$ID   # Preserve ID as rownames
df1 <- df[,2:3]         # Select first DF columns (dropping ID)
df2 <- df[,4:5]         # Select second DF columns (dropping ID)
# Now, you can just add the data.frames together
df1 + df2
          V1        V2
1  120.02139  68.80547
2   58.42664  77.61226
3  122.45271 118.05642
4  103.37629  57.03213
5   46.89026 159.72147
6  128.45038 116.61660
7   95.80656 151.18584
8  104.31857 109.98497
9  149.88049 110.37461
10  40.21353 118.87197