When performing a conditional substraction, where I subtract the previous row value from the current row value for the columns (Jan - AnnualMean) for those rows where the values from the ID column is not equal to 1 or 8.
How to do that? I tried the following, which results in invalid syntax
for index,row in df.iterrows():
    if row["ID"] =! [1,8]:
        row.transform('diff')
input
ID  Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez AnnualMean
1   14  18  17  45  22  31  30  4   22  26  12  48  24
2   8   35  21  31  50  49  20  29  17  49  17  3   27
3   19  4   8   27  29  37  25  7   2   2   49  28  20
4   3   50  49  20  17  29  35  39  8   42  41  34  31
5   33  2   12  15  49  49  46  25  39  11  42  38  30
6   12  19  14  38  8   42  5   34  36  29  12  50  25
7   16  48  29  14  41  6   9   3   4   33  12  4   18
8   25  24  4   26  7   45  17  2   47  17  19  3   20
9   47  36  34  24  17  45  3   32  27  15  46  49  31
10  50  15  42  45  13  9   31  10  49  1   30  37  28
1   22  26  32  50  22  30  48  27  19  27  44  19  31
2   27  45  43  7   48  13  43  1   45  8   11  4   25
3   24  4   12  5   10  49  24  16  10  42  46  25  22
4   45  32  21  5   30  5   27  23  4   8   21  23  20
5   38  28  4   8   4   20  36  13  11  14  11  11  17
6   42  46  28  42  46  43  7   8   40  30  33  1   31
7   42  11  37  33  16  27  9   23  42  40  29  35  29
8   40  27  45  24  28  34  4   10  28  16  41  27  27
9   4   4   1   6   8   34  43  48  10  10  37  29  20
10  39  17  18  23  27  32  14  15  8   45  28  40  26
desired output:
    ID  Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez AnnualMean
1   14  18  17  45  22  31  30  4   22  26  12  48  24
2   -6  17  4   -14 28  18  -10 25  -5  23  5   -45 3
3   11  -31 -13 -4  -21 -12 5   -22 -15 -47 32  25  -7
4   -16 46  41  -7  -12 -8  10  32  6   40  -8  6   11
5   30  -48 -37 -5  32  20  11  -14 31  -31 1   4   -1
6   -21 17  2   23  -41 -7  -41 9   -3  18  -30 12  -5
7   4   29  15  -24 33  -36 4   -31 -32 4   0   -46 -7
8   25  24  4   26  7   45  17  2   47  17  19  3   20
9   22  12  30  -2  10  0   -14 30  -20 -2  27  46  11
10  3   -21 8   21  -4  -36 28  -22 22  -14 -16 -12 -3
1   22  26  32  50  22  30  48  27  19  27  44  19  31
2   5   19  11  -43 26  -17 -5  -26 26  -19 -33 -15 -6
3   -3  -41 -31 -2  -38 36  -19 15  -35 34  35  21  -3
4   21  28  9   0   20  -44 3   7   -6  -34 -25 -2  -2
5   -7  -4  -17 3   -26 15  9   -10 7   6   -10 -12 -3
6   4   18  24  34  42  23  -29 -5  29  16  22  -10 14
7   0   -35 9   -9  -30 -16 2   15  2   10  -4  34  -2
8   40  27  45  24  28  34  4   10  28  16  41  27  27
9   -36 -23 -44 -18 -20 0   39  38  -18 -6  -4  2   -7
10  35  13  17  17  19  -2  -29 -33 -2  35  -9  11  6
 
     
    