I am trying to build a binomial logistic regression model. I firstly build the equation, then applied stepwise method to choose the best variables. In the end I am trying to use the function logistic.display to get the coefficients and odds ratio because I want to demonstrate to effect of the variables on the model. when I run the logistic.display function I get error "$ operator is invalid for atomic vectors". Can anyone help? Thank you
model <- glm(decision ~., data = train.data,family = "binomial")
step.model <- stepAIC(model, direction = "both", 
                      trace = FALSE)
logistic.display(step.model)
summary(step.model)
Call:
glm(formula = decision ~ Exposure + VehAge + BonusMalus, family = "binomial", 
    data = train.data)
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.6911  -0.3210  -0.2710  -0.2261   2.9227  
Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -4.66465    0.81457  -5.727 1.03e-08 ***
Exposure     1.16920    0.54048   2.163   0.0305 *  
VehAge      -0.05930    0.03710  -1.599   0.1099    
BonusMalus   0.01961    0.01008   1.946   0.0517 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 275.12  on 800  degrees of freedom
Residual deviance: 267.24  on 797  degrees of freedom
AIC: 275.24
Number of Fisher Scoring iterations: 6
class(step.model)
[1] "glm" "lm" 
This is a sample of my train.data
structure(list(id = c(1, 3, 5, 10, 11, 13, 15, 17, 18, 21), 
    var1 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), var2 = c(0.1, 
    0.77, 0.75, 0.09, 0.84, 0.52, 0.45, 0.27, 0.71, 0.15), var3 = c("D", 
    "D", "B", "B", "B", "E", "E", "C", "C", "B"), var4 = c(5L, 
    5L, 6L, 7L, 7L, 6L, 6L, 7L, 7L, 7L), var5 = c(0L, 0L, 2L, 
    0L, 0L, 2L, 2L, 0L, 0L, 0L), var6 = c(55L, 55L, 52L, 46L, 
    46L, 38L, 38L, 33L, 33L, 41L), var7 = c(50L, 50L, 50L, 
    50L, 50L, 50L, 50L, 68L, 68L, 50L), var8 = c("B12", "B12", 
    "B12", "B12", "B12", "B12", "B12", "B12", "B12", "B12"), 
    var9 = c("Regular", "Regular", "Diesel", "Diesel", "Diesel", 
    "Regular", "Regular", "Diesel", "Diesel", "Diesel"), var10 = c(1217L, 
    1217L, 54L, 76L, 76L, 3003L, 3003L, 137L, 137L, 60L), var11 = c("R82", 
    "R82", "R22", "R72", "R72", "R31", "R31", "R91", "R91", "R52"
    ), decision = c(1, 1, 1, 1, 0, 1, 1, 0, 1, 1)), row.names = c(NA, 
10L), class = "data.frame")
