Let us assume we have a Dataframe with randomly placed NaNs (sometimes even only-NaN rows). Are there already established ways/methods to interpolate with influence of both, rows and columns at the same time? (vectorized)
import pandas as pd, numpy as np
df = pd.DataFrame(np.random.randn(100000, 4),  
                  columns=['one', 'two', 'three', 'four'])
df = df.mask(np.random.random(df.shape) < .1)
print(df)
>>          one       two     three      four
0      0.328574  0.460837 -1.242114  0.871454
1     -1.155524  0.911798  0.733518  1.355840
2     -0.482975       NaN -0.688304  0.015186
3     -0.714028 -2.133300       NaN  1.074630
4     -0.789536 -0.330372  1.158331 -0.571878
        ...       ...       ...       ...
99995 -0.030537  0.160436 -2.085611       NaN
99996 -0.690557       NaN -2.499389  0.044560
99997  0.150332 -1.188956       NaN -1.645208
99998  1.124226  0.443667  1.543553  0.469025
99999 -2.084317 -0.056264 -0.389893 -0.743672
[100000 rows x 4 columns]