Here's a cooked up example. I begin by creating a data.frame that is similar to your data. Then I convert from wide format to long, using the tidyr package. (There are other ways to do this).
With the long format, it's then easy to select out the data you want by Plate identifier.
#----------------------
# Cook up a data.frame
#----------------------
# 30 sequential dates
dates = seq.Date(as.Date("2022-03-01"), as.Date("2022-03-30"), 1)
# 50 wells 
wells <- lapply(LETTERS[1:5], function(l) {paste0(l, seq(1, 10))})
wells <- unlist(wells)
# Create a data.frame
wells_data <- data.frame(expand.grid(dates, wells))
names(wells_data) <- c("Dates", "Wells")
# 30 columns of artificial data
for (i in 1:30) {
  new_data <- data.frame(runif(1:nrow(wells_data)))
  names(new_data) <- paste0("Plate", i)
  wells_data <- cbind(wells_data, new_data)
}
head(wells_data)
           Dates Wells     Plate1    Plate2    Plate3     Plate4     Plate5
1 2022-03-01    A1 0.20418463 0.5932133 0.7070428 0.04231371 0.25872767
2 2022-03-02    A1 0.95218240 0.1114270 0.3763757 0.22992064 0.05632674
3 2022-03-03    A1 0.07162576 0.9902931 0.1437405 0.40102327 0.56432590
4 2022-03-04    A1 0.17148644 0.1849485 0.2062618 0.45908182 0.44657831
5 2022-03-05    A1 0.11334931 0.4820294 0.1663636 0.87436576 0.60177308
6 2022-03-06    A1 0.13949741 0.7862085 0.6162253 0.50698110 0.75309069
      Plate6     Plate7      Plate8    Plate9    Plate10    Plate11   Plate12
1 0.77206623 0.45816279 0.002027475 0.3821823 0.30170925 0.08730046 0.7638708
2 0.31140577 0.39479768 0.919386005 0.2369556 0.33105790 0.86560846 0.9464049
3 0.36804632 0.30644346 0.782938605 0.3723977 0.21561693 0.14770805 0.7371391
4 0.07265802 0.68454399 0.916244462 0.7688442 0.36590464 0.42293563 0.8448824
5 0.59587190 0.78073586 0.338200076 0.3895508 0.61586528 0.47494553 0.8315232
6 0.41189998 0.06666752 0.721342234 0.5130501 0.06648771 0.61675408 0.9384815
# ...more columns...
#----------------------
# Now convert from wide to long
# and split by plate identifier
#----------------------
library(tidyr)
wells_data <- pivot_longer(wells_data,
                           cols=(3:ncol(wells_data)),
                           names_to="Plate",
                           values_to="measurement")
head(wells_data)
# A tibble: 6 × 4
  Dates      Wells Plate  measurement
  <date>     <fct> <chr>        <dbl>
1 2022-03-01 A1    Plate1      0.204 
2 2022-03-01 A1    Plate2      0.593 
3 2022-03-01 A1    Plate3      0.707 
4 2022-03-01 A1    Plate4      0.0423
5 2022-03-01 A1    Plate5      0.259 
6 2022-03-01 A1    Plate6      0.772 
# Now it's easy to select out each Plate:
plates = unique(wells_data$Plate)
lapply(plates, function(p) {
         subset = wells_data[wells_data$Plate == p,]
         # Do whatever you want with this subset
         print(paste("Mean for Plate", p, ":",
                    mean(subset$measurement)))
         
})
Hope this might help to get you going.