Given this pandas dataframe where for each date and field there's a value:
df = pd.DataFrame({
    'date' : [datetime(2021,3,11), datetime(2021,3,11), 
              datetime(2021,3,12), datetime(2021,3,12), 
              datetime(2021,3,13), datetime(2021,3,13)],
    'field': ['A', 'B', 'A', 'B', 'A', 'B'],
    'value': [150, 140, 130, 280, 260, 120]
})
    date      field value
0   2021-03-11  A   150
1   2021-03-11  B   140
2   2021-03-12  A   130
3   2021-03-12  B   280
4   2021-03-13  A   260
5   2021-03-13  B   120
I need to transpose it where each date is a row, and each field is a column:
df2 = pd.DataFrame({
    'date' : [datetime(2021,3,11), 
              datetime(2021,3,12), 
              datetime(2021,3,13)],
    'A': [150, 130, 260],
    'B': [140, 280, 120]
})
      date       A   B
0   2021-03-11  150 140
1   2021-03-12  130 280
2   2021-03-13  260 120
Note that:
- Each date is a row
- The number of fields is variable (in the example the number of fields is two, A and B)
- The content of column valueis converted to the content of each new generated column.
Is this possible to do without iterrows()?
 
    