The question is very unclear.
"Generic" could mean different containers, like std::vector or std::deque. But in your function function you are using a std::vector and the index operator[] and the function push_back. The only 2 containers having all this are std::vector and std::deque. So, this would not make that much sense.
The next level of "generic" would be to have different data types for a std::vector. But with 3 template parameters, this would mean worst case that we add 2 different data types and assign them to a 3rd, again different data type.
Logically this would create a lot of other troubles, type casting would be needed and loss of precision could be the result.
If we look in the function main, then we see, that 3 std::vectors, all with the same data type double are instantiated. This makes sense. And this would restrict the "generic" function to have one common templatized parameter for a type that a std::vector would hold.
This could then look like the following:
#include <iostream>
#include <vector>
#include <algorithm>
template <typename T>
std::vector<T> sumOfVectors(const std::vector<T>& t1, const std::vector<T>& t2) {
    // Get a reference to the larger vector
    const std::vector<T>& largerVector = (t1.size() > t2.size()) ? t1 : t2;
    // Create the resulting vector that can hold all elements
    std::vector<T> result(largerVector.size(), {});
    size_t index{};
    for (; index < std::min(t1.size(),t2.size()); ++index)
        result[index] = t1[index] + t2[index];
    for (; index < largerVector.size(); ++index)
        result[index] = largerVector[index];
    return result;
}
int main() {
    int n1, n2, x;
    std::cin >> n1;
    std::vector < double > a, b, c;
    for (int i = 0; i < n1; i++) {
        std::cin >> x;
        a.push_back(x);
    }
    std::cin >> n2;
    for (int i = 0; i < n2; i++) {
        std::cin >> x;
        b.push_back(x);
    }
    c = sumOfVectors(a, b);
    for (double i : c)
        std::cout << i << " ";
    return 0;
}
But of course you would define an operator + for this, which gives us a more intuitive result:
#include <iostream>
#include <vector>
#include <algorithm>
template <typename T>
std::vector<T> operator +(const std::vector<T>& t1, const std::vector<T>& t2) {
    // Get a reference to the larger vector
    const std::vector<T>& largerVector = (t1.size() > t2.size()) ? t1 : t2;
    // Create the resulting vector that can hold all elements
    std::vector<T> result(largerVector.size(), {});
    size_t index{};
    for (; index < std::min(t1.size(),t2.size()); ++index)
        result[index] = t1[index] + t2[index];
    for (; index < largerVector.size(); ++index)
        result[index] = largerVector[index];
    return result;
}
int main() {
    int n1, n2, x;
    std::cin >> n1;
    std::vector < double > a, b, c;
    for (int i = 0; i < n1; i++) {
        std::cin >> x;
        a.push_back(x);
    }
    std::cin >> n2;
    for (int i = 0; i < n2; i++) {
        std::cin >> x;
        b.push_back(x);
    }
    c = a + b;
    for (double i : c)
        std::cout << i << " ";
    return 0;
}
Edit
With the exact task description given in the comment, we can come up with the needed solution.
It is a little bit more heavy.
We could even add type traits to check, if the containers are iterable, but maybe that is too much (though easy in C++20 with something like if constexpr (std::ranges::range<Container>)
Anyway, please see the updated solution with 2 test cases.
#include <iostream>
#include <type_traits>
#include <vector>
#include <deque>
#include <forward_list>
#include <array>
#include <list>
#include <string>
// Some aliases to avoid heavy typing
template <typename T, typename U>
using Value_t = typename std::common_type<typename T::value_type, typename U::value_type>::type;
template <typename T, typename U>
using Vector_t = typename std::vector<Value_t<T, U>>;
template <typename T, typename U>
auto sum_of_containers(const T& c1, const U& c2) -> Vector_t<T, U> {
    // Get rid of template parameters using aliases
    using MyType = Value_t<T,U>;
    using MyVector = Vector_t<T, U>;
    // Here we will store the result
    MyVector result{};
    typename T::const_iterator c1Iter = std::begin(c1);
    typename U::const_iterator c2Iter = std::begin(c2);
   
    // Add, as long as there are the same number of elements in the containers
    while ((c1Iter != std::end(c1)) and (c2Iter != std::end(c2))) 
        result.push_back(static_cast<MyType>(*c1Iter++) + static_cast<MyType>(*c2Iter++));
        
    // If there should still be elements in one of the containers, then add them to the resulting vector as is
    while (c1Iter != std::end(c1))
        result.push_back(static_cast<MyType>(*c1Iter++));
    while (c2Iter != std::end(c2))
        result.push_back(static_cast<MyType>(*c2Iter++));
        
    return result;
}
int main() {
    // Test Data 0
    std::deque<float> fl1 { 0.1f, 0.2f, 0.3f };
    std::deque<double> dbl1 { 0.1, 0.2, 0.3, 0.4, 0.5 };
    auto result0 = sum_of_containers(fl1, dbl1);
    for (const auto& x0 : result0)
        std::cout << x0 << '\n';
    std::cout << '\n';
    // Test Data 1
    std::deque<int> dq{ -1,2,-3 };
    std::forward_list<float> fl{ 0.1f, 0.2f, 0.3f, 0.4f, 0.5f };
    auto result1 = sum_of_containers(dq, fl);
    for (const auto& x1 : result1)
        std::cout << x1 << '\n';
    std::cout << '\n';
    // Test Data 2
    std::array<unsigned long, 3> ar1{ 1ul,2ul,3ul };
    std::list<double> dbl{ 0.1, 0.2, 0.3, 0.4, 0.5 };
    auto result2 = sum_of_containers(ar1, dbl);
    for (const auto& x2 : result2)
        std::cout << x2 << '\n';
    std::cout << '\n';
}
.
.
.
And of course, but not needed, you would implement also the + operator here.
#include <iostream>
#include <type_traits>
#include <vector>
#include <deque>
#include <forward_list>
#include <array>
#include <list>
#include <string>
// Some aliases to avoid heavy typing
template <typename T, typename U>
using Value_t = typename std::common_type<typename T::value_type, typename U::value_type>::type;
template <typename T, typename U>
using Vector_t = typename std::vector<Value_t<T, U>>;
template <typename T, typename U>
auto operator +(const T& c1, const U& c2) -> Vector_t<T, U> {
    // Get rid of template parameters using aliases
    using MyType = Value_t<T, U>;
    using MyVector = Vector_t<T, U>;
    // Here we will store the result
    MyVector result{};
    typename T::const_iterator c1Iter = std::begin(c1);
    typename U::const_iterator c2Iter = std::begin(c2);
    // Add, as long as there are the same number of elements in the containers
    while ((c1Iter != std::end(c1)) and (c2Iter != std::end(c2)))
        result.push_back(static_cast<MyType>(*c1Iter++) + static_cast<MyType>(*c2Iter++));
    // If there should still be elements in one of the containers, then add them to the resulting vector as is
    while (c1Iter != std::end(c1))
        result.push_back(static_cast<MyType>(*c1Iter++));
    while (c2Iter != std::end(c2))
        result.push_back(static_cast<MyType>(*c2Iter++));
    return result;
}
int main() {
    // Test Data 0
    std::deque<float> fl1{ 0.1f, 0.2f, 0.3f };
    std::deque<double> dbl1{ 0.1, 0.2, 0.3, 0.4, 0.5 };
    auto result0 = fl1 + dbl1;
    for (const auto& x0 : result0)
        std::cout << x0 << '\n';
    std::cout << '\n';
    // Test Data 1
    std::vector<int> ve{ -1,2,-3 };
    std::forward_list<float> fl{ 0.1f, 0.2f, 0.3f, 0.4f, 0.5f };
    auto result1 = ve + fl;
    for (const auto& x1 : result1)
        std::cout << x1 << '\n';
    std::cout << '\n';
    // Test Data 2
    std::array<unsigned long, 3> ar1{ 1ul,2ul,3ul };
    std::list<double> dbl2{ 0.1, 0.2, 0.3, 0.4, 0.5 };
    auto result2 = ar1 + dbl2;
    for (const auto& x2 : result2)
        std::cout << x2 << '\n';
    std::cout << '\n';
}