I have two DataFrames (df1, df2), both with a DateTime index type:
print(type(df1.index))  =>  pandas.core.indexes.datetimes.DatetimeIndex
print(type(df2.index))  =>  pandas.core.indexes.datetimes.DatetimeIndex
Both have just one column with some values:
print(df1):
Sample Date  Value df1     
1992-01-02   430.0
1992-01-03   436.0
1992-01-04   439.0
1992-01-05   432.0
1992-01-06   427.0
           ...
2003-12-26   300.0
2003-12-27   306.0
2003-12-28   319.0
2003-12-29   321.0
2003-12-30   310.0
[4381 rows x 1 columns]
print(df2):
Sample Date   Value df2    
1992-02-12    15.0
1992-04-11    24.0
1992-09-12    14.0
1992-11-18    26.0
1992-11-25    14.0
           ...
2003-10-09    43.0
2003-10-22    12.0
2003-12-02     4.0
2003-12-03    18.0
2003-12-08    44.0
[424 rows x 1 columns]
I want to get a new DF with those two columns (Value df1 and Value df2) just with the rows where the data is available in both data frames. For simplicity df1 is a DF without missing dates, whereas df2 has missing dates.
The results should look something like this:
Sample Date   Value df1    Value df2    
1992-02-12    350.5        15.0
1992-04-11    420.2        24.0
1992-09-12    400.0        14.0
1992-11-18    380.5        26.0
1992-11-25    395.9        14.0
               ...         ...
2003-10-09    500.5        43.0
2003-10-22    480.9        12.0
2003-12-02    500.8        4.0
2003-12-03    350.0        18.0
2003-12-08    370.8        44.0
I tried to create a new df like this:
df = df1[df1.index.isin([df2.index])]
but the result is an empty DF. If I print df1.index.isin([df2.index]) I do get something like this: array([False, False, False, ..., False, False, False]).
Any ideas how can I solve this issue?
Thanks in advance.
