First, you need to have your dates in datetime format. If they're not already datetimes, you can convert them with pd.to_datetime.
df = pd.DataFrame({'Date':['17-2-21', '1-4-21', '21-6-21', '15-9-21', '17-2-22'], 'Price': [10.2, 12.5, 7.0, 3.8, 8.8]})
df.Date = pd.to_datetime(df.Date)
df
| index |
Date |
Price |
| 0 |
2021-02-17 |
10.2 |
| 1 |
2021-01-04 |
12.5 |
| 2 |
2021-06-21 |
7.0 |
| 3 |
2021-09-15 |
3.8 |
| 4 |
2022-02-17 |
8.8 |
Then you can use apply in a similar way than here:
df.loc[(df['Date'].dt.month >= 4) & (df['Date'].dt.month <= 10),'Price_new'] = df.loc[(df['Date'].dt.month >= 4) & (df['Date'].dt.month <= 10),'Price'].apply(lambda x: x + 0.01)
df.loc[(df['Date'].dt.month <= 3) | (df['Date'].dt.month >= 11),'Price_new'] = df.loc[(df['Date'].dt.month <= 3) | (df['Date'].dt.month >= 11),'Price'].apply(lambda x: x + 0.12)
df
| index |
Date |
Price |
Price_new |
| 0 |
2021-02-17 |
10.2 |
10.32 |
| 1 |
2021-01-04 |
12.5 |
12.62 |
| 2 |
2021-06-21 |
7.0 |
7.01 |
| 3 |
2021-09-15 |
3.8 |
3.81 |
| 4 |
2022-02-17 |
8.8 |
8.92 |