Determine the number of distinct ways to arrange the letters for each word in the range A1:A18.
| Input | Desired Output |
|---|---|
| arrangement | 2494800 |
| sequence | 6720 |
| succession | 302400 |
| organization | 29937600 |
| disposition | 1663200 |
| structure | 45360 |
| system | 360 |
| series | 180 |
| grouping | 20160 |
| classification | 1816214400 |
| categorization | 5448643200 |
| codification | 19958400 |
| systematization | 27243216000 |
| disposal | 20160 |
| form | 24 |
| layout | 720 |
| array | 30 |
For example the word arrangement
Formula:
n!
nPr = -------------------
(n1! n2! . . . nr!)
In the (nPr) permutation equation, place the values retrieved from the term arrangement.
11!
nPr = -----------------------
(2! 2! 2! 1! 2! 1! 1! )
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11
= ---------------------------------------------
{(1 x 2) (1 x 2) (1 x 2) (1) (1 x 2) (1) (1)}
nPr of word arrangement = 2494800
As a result, the letters in the word arrangement may be arranged in 2494800 distinct ways.
