I need to convert data in a pandas dataframe in a single column into a dataframe with multiple columns.
Original Dataframe Data:
| Date | Type | Value | 
|---|---|---|
| 10/14/2022 12:35:00 PM | TypeA | 1 | 
| 10/14/2022 12:35:00 PM | TypeB | 2 | 
| 10/14/2022 12:35:00 PM | TypeC | 4 | 
| 10/15/2022 12:35:00 PM | TypeA | 6 | 
| 10/15/2022 12:35:00 PM | TypeB | 17 | 
| 10/15/2022 12:35:00 PM | TypeC | 4 | 
| 10/16/2022 12:35:00 PM | TypeA | 3 | 
| 10/16/2022 12:35:00 PM | TypeB | 1 | 
| 10/16/2022 12:35:00 PM | TypeC | 12 | 
Here is what the data needs to look like when rearranged:
| Date | TypeA | TypeB | TypeC | 
|---|---|---|---|
| 10/14/2022 12:35:00 PM | 1 | 2 | 4 | 
| 10/15/2022 12:35:00 PM | 6 | 17 | 4 | 
| 10/16/2022 12:35:00 PM | 3 | 1 | 12 | 
Here is the code to create the original dataframe:
import pandas as pd
        
        
    
data = [['10/14/2022 12:35:00 PM', 'TypeA', 1],
     ['10/14/2022 12:35:00 PM', 'TypeB', 2],
    ['10/14/2022 12:35:00 PM', 'TypeC', 4],
    ['10/15/2022 12:35:00 PM', 'TypeA', 6],
    ['10/15/2022 12:35:00 PM', 'TypeB', 17],
     ['10/15/2022 12:35:00 PM', 'TypeC', 4],
    ['10/16/2022 12:35:00 PM', 'TypeA', 4],
    ['10/16/2022 12:35:00 PM', 'TypeB', 1],
    ['10/16/2022 12:35:00 PM', 'TypeC', 12]]
        
        
    
df = pd.DataFrame(data, columns=['DateTime', 'Type', 'Value'])
How do I programmatically convert df to the desired arrangement?
