I would like estimate the parameters of the Gompert-Makeham distribution, but I haven't got a result. I would like a method in R, like this Weibull parameter estimation code:
weibull_loglik <- function(parm){
   gamma <- parm[1]
   lambda <- parm[2]
   loglik <- sum(dweibull(vec, shape=gamma, scale=lambda, log=TRUE))
   return(-loglik)
}
weibull <- nlm(weibull_loglik,parm<-c(1,1), hessian = TRUE, iterlim=100)
weibull$estimate
c=weibull$estimate[1];b=weibull$estimate[2]
My data:
  [1]  872   52   31   26   22   17   11   17   17    8   20   12   25   14   17
 [16]   20   17   23   32   37   28   24   43   40   34   29   26   32   34   51
 [31]   50   67   84   70   71  137  123  137  172  189  212  251  248  272  314
 [46]  374  345  411  494  461  505  506  565  590  535  639  710  733  795  786
 [61]  894  963 1019 1149 1185 1356 1354 1460 1622 1783 1843 2049 2262 2316 2591
 [76] 2730 2972 3187 3432 3438 3959 3140 3612 3820 3478 4054 3587 3433 3150 2881
 [91] 2639 2250 1850 1546 1236  966  729  532  375  256  168  107   65   39   22
[106]   12    6    3    2    1    1
summary(vec)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    1.0    32.0   314.0   900.9  1355.0  4054.0
 
    
