All this is asking me to do is write a code that shows if there are any missing values where it is not the customers first order. I have provided the DataFrame. Should I use column 'Order_number" instead? Is my code wrong?
I named the DataFrame df_orders.
I thought my code would find the columns that have missing values and a greater order number than 1.
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 478967 entries, 0 to 478966
Data columns (total 6 columns):
     #   Column                  Non-Null Count   Dtype  
    ---  ------                  --------------   -----  
     0   order_id                478967 non-null  int64  
     1   user_id                 478967 non-null  int64  
     2   order_number            478967 non-null  int64  
     3   order_dow               478967 non-null  int64  
     4   order_hour_of_day       478967 non-null  int64  
     5   days_since_prior_order  450148 non-null  float64
    dtypes: float64(1), int64(5)
    memory usage: 21.9 MB
    None
# Are there any missing values where it's not a customer's first order?
 m_v_fo= df_orders[df_orders['days_since_prior_order'].isna() > 1]
 print(m_v_fo.head())
Empty DataFrame
Columns: [order_id, user_id, order_number, order_dow, order_hour_of_day, 
days_since_prior_order]
Index: []
 
    