I have the following dataframes:
DF1:
     default_item_header   item_ser_num   from_date     to_date  tp_price
0                      2             10  2004-04-01  2004-04-16  15907.89
1                      2             20  2004-04-17  2004-05-02  15908.11
2                      2             30  2004-05-03  2004-05-18  15908.23
3                      2             40  2004-05-19  2004-06-03  15908.32
4                      2             50  2004-06-04  2004-06-19  15908.41
5                      2             60  2004-06-20  2004-07-05  15908.56
6                      2             70  2004-06-20  2004-07-05  15908.56
7                      2             80  2004-07-06  2004-07-21  15908.67
DF2:
     default_item_header   item_ser_num   from_date     to_date   tp_price
0                      2             80  2004-07-06  2004-07-21   15908.67
1                      2             90  2004-07-22  2004-08-06   15908.88
I want to isolate the row number 80 from DF2 which is also appearing in DF1.
I have tried pandas .compare method using:
isolate_data = df1.compare(df2, keep_equal=True)
but coming up with error:
Can only compare identically-labeled DataFrame objects.
I think I am missing something obvious (only I can't spot it). Any help?
