I have the following data:
df = pd.DataFrame({'id' : [1,2,3,4,5,6], 'category' : [1,3,1,4,3,2], 'day1' : [10,20,30,40,50,60], 'day2' : [1,2,3,4,5,7], 'day3' : [0,1,2,3,7,9] })
df
id  category    day1    day2    day3
0   1   1   10  1   0
1   2   3   20  2   1
2   3   1   30  3   2
3   4   4   40  4   3
4   5   3   50  5   7
5   6   2   60  7   9
It is time series data and I need to prepare the new DataFrame as records of ('id', 'category', 'day'):
df = pd.DataFrame({'id' : [1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6], 'category' : [1,1,1,3,3,3,1,1,1,4,4,4,3,3,3,2,2,2], 'day' : [10,1,0,20,2,1,30,3,2,40,4,3,50,5,7,60,7,9]})
df
    id  category    day
0   1   1   10
1   1   1   1
2   1   1   0
3   2   3   20
4   2   3   2
5   2   3   1
6   3   1   30
7   3   1   3
8   3   1   2
9   4   4   40
10  4   4   4
11  4   4   3
12  5   3   50
13  5   3   5
14  5   3   7
15  6   2   60
16  6   2   7
17  6   2   9
But I don't know how to do it without looping by every DataFrame cell
 
     
    