I'm trying to replicate some functions from Stata in R, but I'm really really stuck with the e(sample) function after doing a multiple correspondence analysis (mca).
In Stata the code is this:
    clear
    set obs 10
    gen var1 = cond(_n <= 2, 0, 1)
    gen var2 = cond(_n == 1, 0, 1) 
    gen var3 = var2     
    mca var1 var2 var3, method(burt)
    predict var4 if e(sample)
The last command generates predicted values only for the observations used by mca.
In R, I have been doing this to do mca:
    if(!require("FactoMineR")) {
    install.packages("FactoMineR")
    library("FactoMineR") 
    }
    if(!require("factoextra")) {
    install.packages("factoextra")
    library("factoextra")
    }
    var1 <- c(0, 0, 1, 1, 1, 1, 1, 1, 1, 1)
    var2 <- c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1)
    var3 <- c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1)
    df <- data.frame(var1, var2, var3)
    df$var1 <- as.factor(df$var1)
    df$var2 <- as.factor(df$var2)
    df$var3 <- as.factor(df$var3)
    mca4 <- MCA(df, ncp = 2, method = "Burt")
    mca4$call$marge.col
And I get the same results from the mca process as in Stata, but I've not been able to replicate the last line from the Stata code predict var4 if e(sample), I already tried with predict.mca but it doesn't work at all: it gives me values from the dimensions specified in ncp = 2, so I guess it doesn't do the same as the predict command from Stata.
The results from Stata:
mca var1 var2 var3, method(burt)
Statistics for column categories in standard normalization
             |          Overall          |        Dimension_1        
  Categories |    Mass  Quality   %inert |   Coord   Sqcorr  Contrib 
-------------+---------------------------+---------------------------
var1         |                           |                           
           0 |   0.067    1.101    0.188 |   1.786    1.101    0.213 
           1 |   0.267    1.101    0.047 |  -0.446    1.101    0.053 
-------------+---------------------------+---------------------------
var2         |                           |                           
           0 |   0.033    0.936    0.344 |   3.148    0.936    0.330 
           1 |   0.300    0.936    0.038 |  -0.350    0.936    0.037 
-------------+---------------------------+---------------------------
var3         |                           |                           
           0 |   0.033    0.936    0.344 |   3.148    0.936    0.330 
           1 |   0.300    0.936    0.038 |  -0.350    0.936    0.037 
---------------------------------------------------------------------
predict var4 if e(sample)
The results of the predict command:
var4
2.912461
.3913612
-.4129778
-.4129778
-.4129778
-.4129778
-.4129778
-.4129778
-.4129778
-.4129778