I'm currently struggling with creating a dataframe based on a dictionary that is nested like {key1:[{key:value},{key:value}, ...],key2:[{key:value},{key:value},...]}
And I want this to go into a dataframe, where the value of key1 and key2 are the index, while the  list nested key:value pairs would become the column and record values.
Now, for each key1, key2, etc the list key:value pairs can be different in size. Example data:
some_dict = {'0000297386FB11E2A2730050568F1BAB': [{'FILE_ID': '0000297386FB11E2A2730050568F1BAB'},
  {'FileTime': '1362642335'},
  {'Size': '1016439'},
  {'DocType_Code': 'AF3BD580734A77068DD083389AD7FDAF'},
  {'Filenr': 'F682B798EC9481FF031C4C12865AEB9A'},
  {'DateRegistered': 'FAC4F7F9C3217645C518D5AE473DCB1E'},
  {'TITLE': '2096158F036B0F8ACF6F766A9B61A58B'}],
 '000031EA51DA11E397D30050568F1BAB': [{'FILE_ID': '000031EA51DA11E397D30050568F1BAB'},
  {'FileTime': '1384948248'},
  {'Size': '873514'},
  {'DatePosted': '7C6BCB90AC45DA1ED6D1C376FC300E7B'},
  {'DocType_Code': '28F404E9F3C394518AF2FD6A043D3A81'},
  {'Filenr': '13A6A062672A88DE75C4D35917F3C415'},
  {'DateRegistered': '8DD4262899F20DE45F09F22B3107B026'},
  {'Comment': 'AE207D73C9DDB76E1EEAA9241VJGN02'},
  {'TITLE': 'DF96336A6FE08E34C5A94F6A828B4B62'}]}
The final result should look like this:
Index | File_ID | ... | DatePosted | ... | Comment | Title
0000297386FB11E2A2730050568F1BAB|0000297386FB11E2A2730050568F1BAB|...|NaN|...|NaN|2096158F036B0F8ACF6F766A9B61A58B
000031EA51DA11E397D30050568F1BAB|000031EA51DA11E397D30050568F1BAB|...|7C6BCB90AC45DA1ED6D1C376FC300E7B|...|AE207D73C9DDB76E1EEAA9241VJGN02|DF96336A6FE08E34C5A94F6A828B4B62
Now I've tried to parse the dict directly to pandas using comprehension as suggested in Creating dataframe from a dictionary where entries have different lengths and tried to flatten the dict more, and then parsing it to pandas Flatten nested dictionaries, compressing keys. Both with no avail.
 
     
    