I have the following MultiIndex created with df.groupby(...).resample(). It is stock market-like OHLC data grouped by an asset and then having OHLC candle time-series for this asset.
                       high     low   close  ...  avg_trade  buys  sells
pair     timestamp                           ...                        
AAVE-ETH 2020-01-01    80.0    80.0    80.0  ...     1280.0     1      0
         2020-01-02    96.0    96.0    96.0  ...     1120.0     1      0
ETH-USDC 2020-01-02  1600.0  1600.0  1600.0  ...     5000.0     1      0
         2020-01-05  1620.0  1400.0  1400.0  ...     1125.0     1      1
The df.index content is:
MultiIndex([('AAVE-ETH', '2020-01-01'),
            ('AAVE-ETH', '2020-01-02'),
            ('ETH-USDC', '2020-01-02'),
            ('ETH-USDC', '2020-01-05')],
           names=['pair', 'timestamp'])
I would like to do a DataFrame.truncate() like operation by the second index (timestamp) so that I discard all entries beyond a certain timestamp.
However the naive df.truncate(timestamp) will give an error:
TypeError: Level type mismatch: 2020-01-04 00:00:00
Can a grouped data frame be truncated by its second index (time series) somehow?
 
    