I was trying to run Integrated Gradients as implemented here but unfortunately I get 'Sequential' object has no attribute 'model'.
My model is:
def nn_model():
    learning_rate = 0.001
    model = Sequential()
    model.add(Input(shape=(X1.shape[1],)))
    model.add(Dense(units=100,activation='LeakyReLU'))
    model.add(Dropout(0.01))
    model.add(Dense(units=50,activation='LeakyReLU'))
    model.add(Dropout(0.01))
    model.add(Dense(units=25,activation='LeakyReLU'))
    model.add(Dropout(0.01))
    model.add(Dense(units=1,activation='LeakyReLU'))
    # compile model
    model.compile(loss='mae', optimizer=optimizers.Adam(learning_rate=learning_rate), metrics=['mae'])
    return model
final_nn_model = nn_model()
# fit network
history = final_nn_model.fit(X1, y1, batch_size=10, epochs=500, shuffle=True, verbose=1) 
The line that raises the error is:
if isinstance(model, Sequential):
---> 35     self.model = model.model
     36 elif isinstance(model, Model):
     37     self.model = model
If .model is deprecated, what should I use instead?
 
    