my sql Table
     SDATETIME   FE014BPV    FE011BPV
0   2022-05-28   5.770000   13.735000
1   2022-05-30  16.469999   42.263000
2   2022-05-31  56.480000  133.871994
3   2022-06-01  49.779999  133.561996
4   2022-06-02  45.450001  132.679001
..         ...        ...         ...
93  2022-09-08   0.000000    0.050000
94  2022-09-09   0.000000    0.058000
95  2022-09-10   0.000000    0.051000
96  2022-09-11   0.000000    0.050000
97  2022-09-12   0.000000    0.038000
My code:
import pandas as pd
import pyodbc
monthSQL = pd.read_sql_query('SELECT SDATETIME,max(FE014BPV) as flow,max(FE011BPV) as steam  FROM [SCADA].[dbo].[TOTALIZER] GROUP BY SDATETIME ORDER BY SDATETIME ASC', conn)
monthdata = monthSQL.groupby(monthSQL['SDATETIME'].dt.strftime("%b-%Y"), sort=True).sum()
print(monthdata)
Produces this incorrect output
                  flow        steam
SDATETIME                          
Aug-2022   1800.970001  2580.276996
Jul-2022   1994.300014  2710.619986
Jun-2022   3682.329998  7633.660018
May-2022   1215.950003  3098.273025
Sep-2022      0.000000     1.705000
I want output some thing like below
SDATETIME         flow        steam
May-2022   1215.950003  3098.273025
Jun-2022   3682.329998  7633.660018
Jul-2022   1994.300014  2710.619986
Aug-2022   1800.970001  2580.276996
Sep-2022      0.000000     1.705000
Also, need a sum of last 12 month data
 
     
     
    