Its really important to follow the guidelines when asking a question. Nonetheless, I've made a toy example with the iris dataset.
In order to run the same regressions multiple times over different parts of your dataset, you can use the lapply() function, which applies a function over a vector or list (in this case, the name of the species). The only thing you have to do is pass this to the subset argument in the lm() function:
data("iris")
 
species <- unique(iris$Species)
species
Running species shows the levels of this variable:
[1] setosa     versicolor virginica 
Levels: setosa versicolor virginica
And running colnames(iris) tells us what variables to use:
[1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"     
The lapply function can be run thereafter like so:
models <- lapply(species, function(x) {
   lm(Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width,
    data = iris, subset = iris$Species == x)
 })
 
lapply(models, summary)
The result:
[[1]]
Call:
lm(formula = Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width, 
    data = iris, subset = iris$Species == x)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.38868 -0.07905  0.00632  0.10095  0.48238 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept)   0.86547    0.34331   2.521   0.0152 *
Petal.Width   0.46253    0.23410   1.976   0.0542 .
Sepal.Length  0.11606    0.10162   1.142   0.2594  
Sepal.Width  -0.02865    0.09334  -0.307   0.7602  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.1657 on 46 degrees of freedom
Multiple R-squared:  0.1449,    Adjusted R-squared:  0.08914 
F-statistic: 2.598 on 3 and 46 DF,  p-value: 0.06356
[[2]]
Call:
lm(formula = Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width, 
    data = iris, subset = iris$Species == x)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.61706 -0.13086 -0.02966  0.09854  0.54311 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.16506    0.40032   0.412    0.682    
Petal.Width   1.36021    0.23569   5.771 6.37e-07 ***
Sepal.Length  0.43586    0.07938   5.491 1.67e-06 ***
Sepal.Width  -0.10685    0.14625  -0.731    0.469    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2319 on 46 degrees of freedom
Multiple R-squared:  0.7713,    Adjusted R-squared:  0.7564 
F-statistic: 51.72 on 3 and 46 DF,  p-value: 8.885e-15
[[3]]
Call:
lm(formula = Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width, 
    data = iris, subset = iris$Species == x)
Residuals:
    Min      1Q  Median      3Q     Max 
-0.7325 -0.1493  0.0516  0.1555  0.5866 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.46503    0.47686   0.975    0.335    
Petal.Width   0.21565    0.17410   1.239    0.222    
Sepal.Length  0.74297    0.07129  10.422 1.07e-13 ***
Sepal.Width  -0.08225    0.15999  -0.514    0.610    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2819 on 46 degrees of freedom
Multiple R-squared:  0.7551,    Adjusted R-squared:  0.7391 
F-statistic: 47.28 on 3 and 46 DF,  p-value: 4.257e-14
BTW, you are not performing any stepwise regression in your code. But the above example can be easily modified to do so.
Hope this helps.