Say I have 2 dataframes:
df1
     id       guid               name      item1        item2        item3        item4        item5         item6       item7        item8       item9
0  3031958124  85558-261955282  Alonso  85558-57439  85558-54608  85558-91361  85558-40647  85558-41305  85558-79979  85558-33076  85558-89956  85558-12554
1  3031958127  85558-261955282  Jeff    85558-57439  85558-39280  85558-91361  85558-55987  85558-83083  85558-79979  85558-33076  85558-41872  85558-12554
2  3031958129  85558-261955282  Mike    85558-57439  85558-39280  85558-91361  85558-55987  85558-40647  85558-79979  85558-33076  85558-88297  85558-12534
...
df2 where item_lookup is the index
             item_type   cost  value  target 
item_lookup
85558-57439  item1       9500   25.1   1.9
85558-54608  item2       8000   18.7   0.0 
85558-91361  item3       7000   16.5   0.9
...
I want to add the sum of cost, value, and target for each item1 through item9 using item_lookup (df2) and store that as a column on df1.
So the result should look like: df1
     id       guid               name      item1        item2        item3        item4        item5         item6       item7        item8       item9       cost   value  target
0  3031958124  85558-261955282  Alonso  85558-57439  85558-54608  85558-91361  85558-40647  85558-41305  85558-79979  85558-33076  85558-89956  85558-12554  58000   192.5   38.3
1  3031958127  85558-261955282  Jeff    85558-57439  85558-39280  85558-91361  85558-55987  85558-83083  85558-79979  85558-33076  85558-41872  85558-12554  59400   183.2   87.7
2  3031958129  85558-261955282  Mike    85558-57439  85558-39280  85558-91361  85558-55987  85558-40647  85558-79979  85558-33076  85558-88297  85558-12534  58000   101.5   18.1
...
I've tried following similar solutions online that use .map, however these examples are only for single columns whereas I am trying to sum values for 9 columns.
 
     
     
    


