I have a dataset of patient surgery. Many of the patients have had multiple operations and the value_counts aggregation of their multiple operation codes (there are 4 codes) is shown below.
['O011']                                    2785
['O012']                                    1813
['O011', 'O011']                             811
['O013']                                     532
['O012', 'O012']                             522
['O014']                                     131
['O013', 'O013']                             125
['O014', 'O014']                              26
['O012', 'O011']                              24
['O011', 'O012']                              20
['O011', 'O011', 'O011']                      14
['O011', 'O013']                              12
['O012', 'O012', 'O011']                       6
['O011', 'O012', 'O012']                       6
['O011', 'O011', 'O011', 'O011']               5
['O013', 'O013', 'O013']                       5
['O013', 'O011']                               4
['O012', 'O012', 'O012']                       4
['O012', 'O013']                               3
['O013', 'O014']                               3
['O011', 'O013', 'O013']                       3
['O012', 'O014']                               3
['O011', 'O012', 'O011']                       2
['O012', 'O013', 'O013']                       2
['O011', 'O014']                               2
['O013', 'O012', 'O012']                       2
['O014', 'O014', 'O014']                       2
['O013', 'O012']                               1
['O012', 'O012', 'O013', 'O013', 'O013']       1
['O012', 'O011', 'O012']                       1
['O011', 'O011', 'O012']                       1
['O013', 'O013', 'O011']                       1
['O011', 'O011', 'O012', 'O012']               1
['O014', 'O013', 'O013']                       1
['O013', 'O013', 'O012']                       1
['O012', 'O011', 'O011']                       1
['O011', 'O012', 'O013']                       1
['O013', 'O011', 'O011']                       1
['O012', 'O012', 'O012', 'O012']               1
['O013', 'O013', 'O012', 'O012']               1
['O014', 'O013', 'O011', 'O011']               1
['O012', 'O011', 'O011', 'O011']               1
['O013', 'O011', 'O012']                       1
This shows the sequence of their operations by patient count, - so 2785 patients have had just the one procedure, - O012. I want to create a new column with a boolean 'Are all the operations the same'. There is an itertools recipe for comparing the values in a list here I am a surgeon and my python skills are not up to applying it to the series, - how do I create a new column using this function?.
The series is OPERTN_01_list
I tried
from itertools import groupby
def all_equal(iterable):
    g = groupby(iterable)
    return next(g, True) and not next(g, False)
My dataset is mo (multiple operations), so I tried to apply the function all_equal to the series
mo['eq'] = all_equal(mo['OPERTN_01_list'])
but the new column mo['eq'] had all false values.
I am not sure the best way to implement the function.
 
    