I have an input dataframe for daily fruit spend which looks like this:
spend_df
Date        Apples      Pears      Grapes     
01/01/22      10         47          0
02/01/22      0          22          3
03/01/22      11         0           3
...
For each fruit, I need to apply a function using their respective parameters and inputs spends. The function includes the previous day and the current day spends, which is as follows:
y = beta(1 - exp(-(theta*previous + current)/alpha))
parameters_df
Parameter    Apples      Pears      Grapes  
alpha         132         323        56
beta          424         31         33
theta         13          244        323
My output data frame should look like this (may contain errors):
profit_df
Date         Apples        Pears       Grapes     
01/01/22      30.93         4.19        0       
02/01/22      265.63        31.00       1.72
03/01/22      33.90         30.99       32.99
...     
This is what I attempted:
# First map parameters_df to spend_df
merged_df = input_df.merge(parameters_df, on=['Apples','Pears','Grapes'])
# Apply function to each row
profit_df = merged_df.apply(lambda x: beta(1 - exp(-(theta*x[-1] + x)/alpha))
 
     
    
