Suppose you had a large number of statements of the form
if(a < 10) a++;
if(b < 100) b++;
if(c < 1000) c++;
In a comment, @the busybee refers to this pattern as a "saturating incrementer".
When you see a repeated pattern in code, there's a natural inclination to want to encapsulate the pattern somehow.  Sometimes this is a good idea, or sometimes it's fine to just leave the repetition, if the attempt to encapsulate it ends up making things worse.
One way to encapsulate this particular pattern — I'm not going to say whether I think it's a good way or not — would be to define a function-like macro:
#define INCR_MAX(var, max) if(var < max) var++
Then you could say
INCR_MAX(a, 10);
INCR_MAX(b, 100);
INCR_MAX(c, 1000);
One reason to want to make this a function-like macro (as opposed to a true function) is that a macro can "modify its argument" — in this case, whatever variable name you hand to it as var — in a way that a true function couldn't.  (That is, if your saturating incrementer were a true function, you would have to call it either as incr_max(&a, 10) or a = incr_max(a, 10), depending on how you chose to set it up.)
However, there's an issue with function-like macros and the semicolon at the end.  I'm not going to explain that whole issue here; there's a big long previous SO question about it.
Applying the lesson of that other question, an "improved" INCR_MAX macro would be
#define INCR_MAX(var, max) do { if(var < max) var++; } while(0)
Finally, it appears that somewhere between your exercise and this SO question, the while(0) at the end somehow got changed to while(1).  This just about has to have been an unintentional error, since while(1) makes no sense in this context whatsoever.