I built multiclass classification model (with 5 classes in target) in Python and I have confusion matrix like below:
confusion_matrix(y_test, model.predict(X_test))
[[2006 114 80 312 257]
 [567  197 87 102 155]
 [256  84  316 39 380]
 [565  30  67 592 546]
 [363  71  186 301 1402]]
How can I calculate based on confusion matrix above, the following values:
- True Negative
 - False Positive
 - False Negative
 - True Positive
 - Accuracy
 - True Positive Rate
 - False Positive Rate
 - True Negative Rate
 - False Negative Rate
 
I have the following function to calculate that for binnary target, but how can I modify that function to calculate that for my 5 classes target ?
def xx(model, X_test, y_test):
    CM = confusion_matrix(y_test, model.predict(X_test))
    print(CM)
    print("-"*40)
    TN = CM[0][0]
    FP = CM[0][1]
    FN = CM[1][0]
    TP = CM[1][1]
    sensitivity=TP/float(TP+FN)
    specificity=TN/float(TN+FP)
    print("True Negative:", TN)
    print("False Positive:", FP)
    print("False Negative:", FN)
    print("True Positive:", TP)
    print("Accuracy", round((TN + TP) / len(model.predict(X_test)) * 100, 2), "%")
    print("True Positive rate",round(TP/(TP+FN)*100,2), "%")
    print("False Positive rate",round(FP/(FP+TN)*100,2), "%")
    print("True Negative rate",round(TN/(FP+TN)*100,2), "%")
    print("False Negative rate",round(FN/(FN+TP)*100,2), "%")