A simple benchmark is following. It seems that if you just want to dichotomize a column, if_else is preferable to case_when in dplyr. If you care about the speed, change the workflow to base like @Roland's answer.
InputData = data.frame(A = sample(c('x', ''), 1e5, TRUE),
                       B = sample(c('x', ''), 1e5, TRUE),
                       C = sample(c('x', ''), 1e5, TRUE),
                       D = sample(0:1, 1e5, TRUE))
library(dplyr)
bench::mark(
  "base::ifelse" = InputData %>% mutate(R = ifelse(A == '' & B == '' & C == '' & D == 0, "Yes", "No")),
  "dplyr::case_when" = InputData %>% mutate(R = case_when(A == '' & B == '' & C == '' & D == 0 ~ "Yes", TRUE ~ "No")),
  "dplyr::if_else" = InputData %>% mutate(R = if_else(A == '' & B == '' & C == '' & D == 0, "Yes", "No")),
  "base::repalce" = InputData %>% mutate(R = "No", R = replace(R, A == '' & B == '' & C == '' & D == 0, "Yes")),
  "base::`[<-`.Roland" = local({
    InputData$R <- "No"
    InputData$R[InputData$A == '' & InputData$B == '' & InputData$C == '' & InputData$D == 0] <- "Yes"
    InputData
  }),
  iterations = 100
)
# # A tibble: 5 × 9
#   expression              min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time
#   <bch:expr>         <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm>
# 1 base::ifelse        24.87ms  25.82ms      38.0    7.63MB     17.1    69    31      1.82s
# 2 dplyr::case_when    15.65ms  16.91ms      57.0     8.4MB     24.4    70    30      1.23s
# 3 dplyr::if_else       6.77ms   7.17ms     133.     6.87MB     39.6    77    23   580.57ms
# 4 base::repalce         5.6ms    5.9ms     166.     5.75MB     36.4    82    18    495.1ms
# 5 base::`[<-`.Roland   3.47ms   3.52ms     269.     3.84MB     33.2    89    11   331.35ms