If you're not going to assign the data frames to a list, another approach is to simply list the data frame names in a vector, and use get() within an lapply() function to access the object from the parent environment.
Absent a minimal reproducible example, code to do this looks like the following:
dfList <- c("dfQB","dfRB","dfOL") # a subset of the data frames
updatedData <- lapply(dfList,function(x){
     df <- get(x) # get the actual data from parent environment 
     for(i in 1:nrow(df)){
          ecdf_fun <- function(x,perc) ecdf(x)(perc)
          de=df[i,5:10]
          a=(1-ecdf_fun(df$Forty,de[1]))
          b=(ecdf_fun(df$Vertical,de[2]))
          c=(ecdf_fun(df$BenchReps,de[3]))
          d=(ecdf_fun(df$BroadJump,de[4]))
          e=(1-ecdf_fun(df$Cone,de[5]))
          f=(1-ecdf_fun(df$Shuttle,de[6]))
          nenner=6-sum(is.na(a), is.na(b),is.na(c), is.na(d),is.na(e), is.na(f))
          if (is.na(a)) {a <- 0}
          if (is.na(b)) {b <- 0}
          if (is.na(c)) {c <- 0}
          if (is.na(d)) {d <- 0}
          if (is.na(e)) {e <- 0}
          if (is.na(f)) {f <- 0}
          df$RAS[i]=((a+b+c+d+e+f)/nenner)*10
     }
     df # return to parent environment 
})
At this point, the object updatedData is a list of data frames.
As minimal reproducible example we'll download and update one column from the nine generations of Pokémon stats.
First, we'll download the data and unzip it to a subdirectory of the current working directory.
   download.file("https://raw.githubusercontent.com/lgreski/pokemonData/master/PokemonData.zip",
              "pokemonData.zip",
              method="curl",mode="wb")
   unzip("pokemonData.zip",exdir="./pokemonData")
Next, we'll create a vector containing the .csv files we downloaded.
thePokemonFiles <- list.files("./pokemonData",pattern = ".csv",
                              full.names=TRUE)
Next, we use the vector of file names to read the data into data frames and assign them as data frames in the global environment via the assign() function. Yes, I am aware that it's easier to work with the data frames in a list, but this replicates the "current state" of the original post.
pokemonDataFiles <- lapply(thePokemonFiles,function(x) {
     df <- read.csv(x,stringsAsFactors=FALSE)
     dfName <- substr(x,15,19)
     assign(dfName,df,envir = .GlobalEnv) # assign to global environment 
})
Next, we'll create a vector to represent the names of the data frames we created.
Finally, we multiply the HP stat by ten in each data frame, return the data frame to a list, and compare the original and updated data for one data frame.
theNames <- paste0("gen0",1:9)
updatedData <- lapply(theNames,function(df){
     x <- get(df)
     x$HP <- x$HP * 10 
     x
})
# compare the first few rows of gen01 Pokemon HP
head(data.frame(original.HP = gen01$HP,updatedHP =updatedData[[1]][["HP"]]))
...and the output:
> head(data.frame(original.HP = gen01$HP,updatedHP = updatedData[[1]][["HP"]]))
  original.HP updatedHP
1          45       450
2          60       600
3          80       800
4          39       390
5          58       580
6          78       780